Emotion-dependent language featuring depression

心理学 萧条(经济学) 心理治疗师 认知心理学 临床心理学 精神分析 宏观经济学 经济
作者
Chaoqing Yang,Xinying Zhang,Yuxuan Chen,Yunge Li,Shu Yu,Bingmei Zhao,Tao Wang,Lizhu Luo,Shan Gao
出处
期刊:Journal of Behavior Therapy and Experimental Psychiatry [Elsevier BV]
卷期号:81: 101883-101883 被引量:9
标识
DOI:10.1016/j.jbtep.2023.101883
摘要

Understanding language features of depression contributes to the detection of the disorder. Considering that depression is characterized by dysfunctions in emotion and individuals with depression often show emotion-dependent cognition, the present study investigated the speech features and word use of emotion-dependent narrations in patients with depression.Forty depression patients and forty controls were required to narrate self-relevant memories under five basic human emotions (i.e., sad, angry, fearful, neutral, and happy). Recorded speech and transcribed texts were analyzed.Patients with depression, as compared to non-depressed individuals, talked slower and less. They also performed differently in using negative emotion, work, family, sex, biology, health, and assent words regardless of emotion manipulation. Moreover, the use of words such as first person singular pronoun, past tense, causation, achievement, family, death, psychology, impersonal pronoun, quantifier and preposition words displayed emotion-dependent differences between groups. With the involvement of emotion, linguistic indicators associated with depressive symptoms were identified and explained 71.6% variances of depression severity.Word use was analyzed based on the dictionary which does not cover all the words spoken in the memory task, resulting in text data loss. Besides, a relatively small number of depression patients were included in the present study and therefore the results need confirmation in future research using big emotion-dependent data of speech and texts.Our findings suggest that consideration of different emotional contexts is an effective means to improve the accuracy of depression detection via the analysis of word use and speech features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李瑞瑞完成签到,获得积分10
1秒前
列奥维登发布了新的文献求助30
1秒前
cheng发布了新的文献求助10
1秒前
longi完成签到,获得积分10
1秒前
A0228号卫星完成签到,获得积分10
1秒前
2秒前
感动水杯发布了新的文献求助10
2秒前
2秒前
ding应助吴灵采纳,获得10
2秒前
2秒前
留胡子的尔蝶给留胡子的尔蝶的求助进行了留言
3秒前
香蕉觅云应助123456采纳,获得10
3秒前
3秒前
纯真尔竹完成签到,获得积分10
4秒前
落枫依秋发布了新的文献求助10
5秒前
xinxin完成签到 ,获得积分10
5秒前
迷你的奎发布了新的文献求助10
5秒前
熊二是个豆子完成签到,获得积分10
5秒前
吹梦西洲发布了新的文献求助10
5秒前
5秒前
思源应助秦川采纳,获得10
5秒前
Jasper应助jerry采纳,获得10
6秒前
111发布了新的文献求助10
6秒前
yueyue完成签到,获得积分10
6秒前
缓冲中发布了新的文献求助10
6秒前
刘l发布了新的文献求助10
6秒前
Salamenda发布了新的文献求助10
7秒前
尼克劳斯发布了新的文献求助30
7秒前
风凌发布了新的文献求助10
7秒前
brianzk1989完成签到,获得积分0
7秒前
Xu完成签到,获得积分10
8秒前
8秒前
8秒前
谦让霸完成签到 ,获得积分10
8秒前
xinxin关注了科研通微信公众号
9秒前
MrSong发布了新的文献求助50
9秒前
9秒前
魏强完成签到,获得积分10
9秒前
科研通AI6应助乐观的雨采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071562
求助须知:如何正确求助?哪些是违规求助? 4292245
关于积分的说明 13373618
捐赠科研通 4112992
什么是DOI,文献DOI怎么找? 2252181
邀请新用户注册赠送积分活动 1257228
关于科研通互助平台的介绍 1189934