Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory

光伏 光伏系统 地理信息系统 太阳能 地理空间分析 随机森林 太阳能 环境科学 计算机科学 土地覆盖 地理 工程类 土地利用 地图学 土木工程 功率(物理) 人工智能 物理 电气工程 量子力学
作者
Yanwei Sun,Danfeng Zhu,Ying Li,Run Wang,Renfeng Ma
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:289: 117198-117198 被引量:25
标识
DOI:10.1016/j.enconman.2023.117198
摘要

The optimum site selection of solar photovoltaics power plant across a given geographic space is usually assessed by using the geographic information system based multi-criteria decision making methods with various restriction criteria, while such evaluation results vary with criteria weights and are difficult to be validated in real life practices. To address this issue, this paper uses a national inventory dataset of large-scale solar photovoltaics installations (the land coverage area ≥ 1 hm2) to investigate the spatial location choices of solar power plants with the aids of interpretable machine learning techniques. A total of 21 geospatial conditioning factors of solar energy development are considered. The location choices of solar photovoltaics installation are then modeled with the multi-Layer perceptron, random forest, extreme gradient boosting models for each land cover type (e.g. cropland, forest, grassland, and barren). The SHapley additive explanation and variable importance measure methods are adopted to identify key criteria and their influences on the solar photovoltaics installation location selection. Results indicate that the random forest model presented the better performance among three machine learning models. The relative importance of conditioning factors revealed that the vegetation index and distance to power grid were always the most important predictors of solar photovoltaics installation location. Furthermore, topographical factors and transportation convenience may have a moderate impact on the spatial distribution of solar photovoltaics power stations. Unexpectedly, most of resources endowment and socio-economic factors play a negligible role in determining the optimal siting of solar power farms. Simulated solar photovoltaics installations probability maps illustrated that the most suitable regions account for 4.6 % of China’s total land area. The evidence-based method proposed in this research can not only help identify suitable solar photovoltaics farm locations in terms of various decision-making criterion, but also provide a robust planning tool for sustainable development of solar energy sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一高速下载文献没有问题完成签到,获得积分10
1秒前
派大星发布了新的文献求助10
2秒前
hx完成签到 ,获得积分10
2秒前
zenabia发布了新的文献求助10
2秒前
2秒前
lxy发布了新的文献求助10
2秒前
善学以致用应助远方采纳,获得10
3秒前
吴青完成签到,获得积分10
4秒前
afterly发布了新的文献求助10
4秒前
人类之光发布了新的文献求助10
4秒前
5秒前
5秒前
包妹完成签到,获得积分10
5秒前
JamesPei应助整齐醉冬采纳,获得10
6秒前
6秒前
山止川行发布了新的文献求助200
6秒前
大个应助沉静的靖巧采纳,获得10
6秒前
6秒前
内向问旋发布了新的文献求助10
7秒前
慕青应助1278day采纳,获得10
8秒前
西柚发布了新的文献求助10
8秒前
史中瑞发布了新的文献求助10
8秒前
cc完成签到 ,获得积分10
8秒前
8秒前
阿航发布了新的文献求助10
9秒前
masirthu发布了新的文献求助10
9秒前
是鸢完成签到,获得积分10
10秒前
元昭诩应助欧阳X天采纳,获得10
10秒前
11秒前
森森完成签到,获得积分10
11秒前
justly发布了新的文献求助10
11秒前
12秒前
苏苏完成签到,获得积分10
12秒前
15秒前
xiaoze发布了新的文献求助10
15秒前
CAOHOU给Maestro_S的求助进行了留言
15秒前
15秒前
16秒前
zxr完成签到,获得积分10
16秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4115426
求助须知:如何正确求助?哪些是违规求助? 3653817
关于积分的说明 11570442
捐赠科研通 3357541
什么是DOI,文献DOI怎么找? 1844358
邀请新用户注册赠送积分活动 910067
科研通“疑难数据库(出版商)”最低求助积分说明 826691