电催化剂
氧还原
氧还原反应
材料科学
铜
对偶(语法数字)
Boosting(机器学习)
氧气
无机化学
电化学
纳米技术
金属
化学
电极
物理化学
冶金
有机化学
艺术
文学类
机器学习
计算机科学
作者
Dongdong Wang,Xiaorong Zhu,Xiaojin Tu,Xiaoran Zhang,Chen Chen,Xiaoxiao Wei,Yafei Li,Shuangyin Wang
标识
DOI:10.1002/adma.202304646
摘要
Electrocatalytic reduction of nitric oxide (NO) to ammonia (NH3 ) is a promising approach to NH3 synthesis. However, due to the lack of efficient electrocatalysts, the performance of electrocatalytic NO reduction reaction (NORR) is far from satisfactory. Herein, it is reported that an atomic copper-iron dual-site electrocatalyst bridged by an axial oxygen atom (OFeN6 Cu) is anchored on nitrogen-doped carbon (CuFe DS/NC) for NORR. The CuFe DS/NC can significantly enhance the electrocatalytic NH3 synthesis performance (Faraday efficiency, 90%; yield rate, 112.52 µmol cm-2 h-1 ) at -0.6 V versus RHE, which is dramatically higher than the corresponding Cu single-atom, Fe single-atom and all NORR single-atom catalysts in the literature so far. Moreover, an assembled proof-of-concept Zn-NO battery using CuFe DS/NC as the cathode outputs a power density of 2.30 mW cm-2 and an NH3 yield of 45.52 µg h-1 mgcat-1 . The theoretical calculation result indicates that bimetallic sites can promote electrocatalytic NORR by changing the rate-determining step and accelerating the protonation process. This work provides a flexible strategy for efficient sustainable NH3 synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI