Active defect discovery: A human-in-the-loop learning method

计算机科学 异常检测 梯度下降 人工智能 后悔 数据挖掘 模式识别(心理学) 机器学习 人工神经网络
作者
Bo Shen,Zhenyu Kong
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:56 (6): 638-651 被引量:1
标识
DOI:10.1080/24725854.2023.2224854
摘要

AbstractUnsupervised defect detection methods are applied to an unlabeled dataset by producing a ranked list based on defect scores. Unfortunately, many of the top-ranked instances by unsupervised algorithms are not defects, which leads to high false-positive rates. Active Defect Discovery (ADD) is proposed to overcome this deficiency, which sequentially selects instances to get the labeling information (defects or not). However, labeling is often costly. Therefore, balancing detection accuracy and labeling cost is essential. Along this line, this article proposes a novel ADD method to achieve the goal. Our approach is based on the state-of-the-art unsupervised defect detection method, namely, Isolation Forest, as the baseline defect detector to extract features. Thereafter, the sparsity of the extracted features is utilized to adjust the defect detector so that it can focus on more important features for defect detection. To enforce the sparsity of the features and subsequent improvement of the detection accuracy, a new algorithm based on online gradient descent, namely, Sparse Approximated Linear Defect Discovery (SALDD), is proposed with its theoretical Regret analysis. Extensive experiments are conducted on real-world datasets including healthcare, manufacturing, security, etc. The performance demonstrates that the proposed algorithm significantly outperforms the state-of-the-art algorithms for defect detection.Keywords: Isolation forestsparsityactive defect discoverymeasurement feedbackonline gradient descent Data availability statementThe authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.Notes1 It is actually anomaly detection in an industrial engineering setting.2 The Best-in-class performance that generalizes: https://pyod.readthedocs.io/en/latest/benchmark.html3 http://odds.cs.stonybrook.edu/4 Type I and II errors are not good criteria for our case since Type I error = 1 and Type II error = 0.Additional informationFundingThis project was funded by the Office of Naval Research under Award Number N00014-18-1-2794.Notes on contributorsBo ShenBo Shen is an assistant professor in the Department of Mechanical and Industrial Engineering at the New Jersey Institute of Technology. He received his PhD in industrial and systems engineering at Virginia Tech, Blacksburg, VA, in August 2022. He also received his BS degree in statistics from the University of Science and Technology of China, Hefei, China, in July 2017. His research interests include optimization and machine learning, and data analytics in smart manufacturing, wearable robots, and space weather.Zhenyu (James) KongZhenyu (James) Kong (SM'22) received his BS and MS degrees in mechanical engineering from Harbin Institute of Technology, China, in 1993 and 1995, respectively, and his PhD degree from the Department of Industrial and System Engineering, University of Wisconsin–Madison, Madison, WI, USA, in 2004. He is currently a professor with the Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA. His research interests include sensing and analytics for smart manufacturing, and modeling, synthesis, and diagnosis for large and complex manufacturing systems. He is a fellow of the Institute of Industrial and Systems Engineers (IISE) and the American Society of Mechanical Engineers (ASME). He was recognized as one of the 20 Most Influential Academics in Smart Manufacturing by the Society of Manufacturing Engineering (SME) in 2021.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
4秒前
狄百招完成签到,获得积分0
6秒前
7秒前
感动代荷完成签到 ,获得积分20
7秒前
北辰完成签到,获得积分10
8秒前
wonder123发布了新的文献求助10
8秒前
飞快的薯片完成签到,获得积分10
8秒前
9秒前
xgx984发布了新的文献求助10
9秒前
北辰发布了新的文献求助10
10秒前
王佳豪发布了新的文献求助10
11秒前
17秒前
18秒前
18秒前
CodeCraft应助迅速的八宝粥采纳,获得10
20秒前
乔晶发布了新的文献求助10
20秒前
exosome发布了新的文献求助10
21秒前
鲸落完成签到,获得积分10
21秒前
22秒前
冷酷蛋挞发布了新的文献求助10
23秒前
jiulin发布了新的文献求助30
25秒前
nino应助夏时安采纳,获得20
27秒前
berry完成签到,获得积分10
29秒前
田様应助wonder123采纳,获得10
31秒前
八百标兵奔北坡完成签到 ,获得积分10
34秒前
35秒前
36秒前
奋斗完成签到,获得积分10
37秒前
38秒前
东东发布了新的文献求助10
41秒前
41秒前
42秒前
莱贝特发布了新的文献求助10
43秒前
我是老大应助俭朴的猫咪采纳,获得10
44秒前
44秒前
乔晶完成签到,获得积分20
45秒前
打打应助江湖笑采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780560
求助须知:如何正确求助?哪些是违规求助? 3326076
关于积分的说明 10225366
捐赠科研通 3041143
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799024
科研通“疑难数据库(出版商)”最低求助积分说明 758669