Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding

计算机科学 成对比较 静电学 水准点(测量) 嵌入 可转让性 电荷(物理) 人工神经网络 统计物理学 集合(抽象数据类型) 机器学习 人工智能 化学物理 物理 量子力学 大地测量学 罗伊特 程序设计语言 地理
作者
Tsz Wai Ko,Jonas A. Finkler,Stefan Goedecker,Jörg Behler
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (12): 3567-3579 被引量:28
标识
DOI:10.1021/acs.jctc.2c01146
摘要

In recent years, significant progress has been made in the development of machine learning potentials (MLPs) for atomistic simulations with applications in many fields from chemistry to materials science. While most current MLPs are based on environment-dependent atomic energies, the limitations of this locality approximation can be overcome, e.g., in fourth-generation MLPs, which incorporate long-range electrostatic interactions based on an equilibrated global charge distribution. Apart from the considered interactions, the quality of MLPs crucially depends on the information available about the system, i.e., the descriptors. In this work we show that including─in addition to structural information─the electrostatic potential arising from the charge distribution in the atomic environments significantly improves the quality and transferability of the potentials. Moreover, the extended descriptor allows current limitations of two- and three-body based feature vectors to be overcome regarding artificially degenerate atomic environments. The capabilities of such an electrostatically embedded fourth-generation high-dimensional neural network potential (ee4G-HDNNP), which is further augmented by pairwise interactions, are demonstrated for NaCl as a benchmark system. Employing a data set containing only neutral and negatively charged NaCl clusters, even small energy differences between different cluster geometries can be resolved, and the potential shows an impressive transferability to positively charged clusters as well as the melt.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Owen应助joleisalau采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
谢会会完成签到 ,获得积分10
6秒前
6秒前
阿斯顿发布了新的文献求助10
8秒前
8秒前
青橘短衫发布了新的文献求助10
8秒前
10秒前
科研通AI5应助w934420513采纳,获得10
10秒前
葵花籽完成签到,获得积分10
13秒前
Jasper应助tian采纳,获得10
13秒前
王王完成签到,获得积分10
13秒前
14秒前
15秒前
胖头鱼发布了新的文献求助10
16秒前
16秒前
务实幻露完成签到,获得积分10
17秒前
Xiaoxiao应助hansiball采纳,获得10
17秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366