Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm

计算机科学 人工神经网络 股票市场 人工智能 超参数 机器学习 股票市场指数 股市预测 库存(枪支) 股票价格 算法 计量经济学 经济 系列(地层学) 机械工程 古生物学 工程类 生物
作者
Burak Gülmez
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120346-120346 被引量:133
标识
DOI:10.1016/j.eswa.2023.120346
摘要

The stock market is a financial market where shares of publicly listed corporations are purchased and sold. It is an indicator of a country's economic health, reflecting the performance of companies and the overall business environment. The prices of stocks are determined by supply and demand. Investing in the stock market can be risky, but it can offer the potential for significant returns over the long term. Artificial intelligence, including the stock market, has become increasingly prevalent in the financial sector. Long Short-Term Memory (LSTM) is a type of artificial neural network that is often used in time series analysis. It can effectively predict stock market prices by handling data with multiple input and output timesteps. Metaheuristic algorithms, such as Artificial Rabbits Optimization algorithm (ARO), can be used to optimize the hyperparameters of an LSTM model and improve the accuracy of stock market predictions. In this paper, an optimized deep LSTM network with the ARO model (LSTM-ARO) is created to predict stock prices. DJIA index stocks are used as the dataset. LSTM-ARO is compared with one artificial neural network (ANN) model, three different LSTM models, and LSTM optimized by Genetic Algorithm (GA) model. All the models are tested on MSE, MAE, MAPE, and R2 evaluation criteria. The results show that LSTM-ARO overcomes the other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的幼南完成签到,获得积分10
刚刚
小溪完成签到,获得积分10
1秒前
1秒前
二三发布了新的文献求助10
1秒前
Atlantis发布了新的文献求助10
1秒前
爱睡觉的森森完成签到,获得积分10
2秒前
找不到文献的小江完成签到,获得积分10
4秒前
4秒前
sci666发布了新的文献求助10
4秒前
汉堡包应助aji采纳,获得10
5秒前
6秒前
聪明梦容发布了新的文献求助20
6秒前
科研通AI2S应助三十三天采纳,获得10
7秒前
水水发布了新的文献求助10
7秒前
8秒前
谈笑间应助zhong241采纳,获得10
8秒前
9秒前
英姑应助孔大漂亮采纳,获得10
10秒前
10秒前
我是老大应助huanhuan采纳,获得10
11秒前
bkagyin应助小田心采纳,获得10
11秒前
仁爱水之发布了新的文献求助10
13秒前
像个小蛤蟆完成签到 ,获得积分10
13秒前
AliHamid发布了新的文献求助10
13秒前
13秒前
Roxy关注了科研通微信公众号
14秒前
十月发布了新的文献求助20
15秒前
15秒前
16秒前
忧郁冰真发布了新的文献求助10
17秒前
懦弱的咖啡豆完成签到,获得积分10
17秒前
18秒前
yusheng发布了新的文献求助10
19秒前
19秒前
小何同学完成签到,获得积分10
20秒前
又是一年发布了新的文献求助10
20秒前
21秒前
困困困困发布了新的文献求助50
22秒前
年轻寒云完成签到 ,获得积分10
22秒前
小田心发布了新的文献求助10
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345074
关于积分的说明 10323372
捐赠科研通 3061599
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807075
科研通“疑难数据库(出版商)”最低求助积分说明 763462