清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multiple Instance Learning Improves Ames Mutagenicity Prediction for Problematic Molecular Species

艾姆斯试验 数量结构-活动关系 生物信息学 化学 分子描述符 训练集 分子 分子模型 计算生物学 计算化学 立体化学 生物化学 计算机科学 生物 遗传学 有机化学 人工智能 基因 细菌 沙门氏菌
作者
Samuel V. Feeney,Raymond Lui,Davy Guan,Slade Matthews
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:36 (8): 1227-1237 被引量:12
标识
DOI:10.1021/acs.chemrestox.2c00372
摘要

The prediction of Ames mutagenicity continues to be a concern in both regulatory and pharmacological toxicology. Traditional quantitative structure-activity relationship (QSAR) models of mutagenicity make predictions based on molecular descriptors calculated on a chemical data set used in their training. However, it is known that molecules such as aromatic amines can be non-mutagenic themselves but metabolically activated by S9 rodent liver enzyme in Ames tests forming molecules such as iminoquinones or amine substituents that better stabilize mutagenic nitrenium ions in known pathways of mutagenicity. Modern in silico modeling methods can implicitly model these metabolites through consideration of the structural elements relevant to their formation but do not include explicit modeling of these metabolites' potential activity. These metabolites do not have a known individual mutagenicity label and, in their current state, cannot be fitted into a traditional QSAR model. Multiple instance learning (MIL) however can be applied to a group of metabolites and their parent under a single mutagenicity label. Here we trained MIL models on Ames data, first with an aromatic amines data set (n = 457), a class known to require metabolic activation, and subsequently on a larger data set (n = 6505) incorporating multiple molecular species. MIL was shown to be able to predict Ames mutagenicity with performance in line with previously established models (balanced accuracy = 0.778), suggesting its potential utility in Ames prediction applications. Furthermore, the MIL model predicted well on identified hard-to-predict molecule groups relative to the models in which these molecule groups were identified. These results are presumably due to the increased consideration of the metabolic contribution to the mutagenic outcome. Further exploration of MIL as a supplement to existing models could aid in the prediction of chemicals where implicit modeling of metabolites cannot fully grasp their characteristics. This paper demonstrates the potential of an MIL approach to modeling Ames tests with S9 and is particularly relevant to metabolically activated xenobiotic mutagens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
午后狂睡完成签到 ,获得积分10
2秒前
2秒前
KKIII发布了新的文献求助10
8秒前
15秒前
岁岁发布了新的文献求助10
18秒前
海阔天空完成签到 ,获得积分10
21秒前
大水完成签到 ,获得积分10
24秒前
25秒前
27秒前
玩命做研究完成签到 ,获得积分10
40秒前
偷得浮生半日闲完成签到,获得积分10
1分钟前
1分钟前
fang应助科研通管家采纳,获得10
1分钟前
fang应助科研通管家采纳,获得10
1分钟前
1分钟前
Jasper应助顺顺采纳,获得10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
2分钟前
黄芩完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
3分钟前
Nora完成签到 ,获得积分10
3分钟前
卓初露完成签到 ,获得积分10
4分钟前
Willy完成签到,获得积分10
4分钟前
longlonglong完成签到,获得积分10
4分钟前
Sew东坡完成签到,获得积分10
5分钟前
动人的诗霜完成签到 ,获得积分10
5分钟前
辻诺完成签到 ,获得积分10
5分钟前
蒲公英完成签到 ,获得积分10
5分钟前
传奇3应助参上采纳,获得10
5分钟前
5分钟前
木头发布了新的文献求助10
5分钟前
zhuosht完成签到 ,获得积分10
6分钟前
jerry完成签到 ,获得积分10
6分钟前
6分钟前
Benhnhk21完成签到,获得积分10
6分钟前
Herbs完成签到 ,获得积分10
6分钟前
领导范儿应助迅速的岩采纳,获得10
6分钟前
rockyshi完成签到 ,获得积分10
6分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4054199
求助须知:如何正确求助?哪些是违规求助? 3592202
关于积分的说明 11413913
捐赠科研通 3318351
什么是DOI,文献DOI怎么找? 1825013
邀请新用户注册赠送积分活动 896271
科研通“疑难数据库(出版商)”最低求助积分说明 817418