Fault detection in wind turbine generators using a meta-learning-based convolutional neural network

涡轮机 计算机科学 故障检测与隔离 人工智能 风力发电 断层(地质) 卷积神经网络 人工神经网络 机器学习 模式识别(心理学) 工程类 地质学 电气工程 航空航天工程 执行机构 地震学
作者
Likui Qiao,Yuxian Zhang,Qisen Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110528-110528 被引量:25
标识
DOI:10.1016/j.ymssp.2023.110528
摘要

Conventional fault detection methods for wind turbine (WT) generators often grapple with inadequate warning times and poor portability. These issues contribute to heightened safety risks and an increased false positive rate (FPR) and false negative rate (FNR). This study introduces a fault detection method for WT generators utilizing a 1D convolutional neural network (1DCNN) based on meta-learning principles. We incorporate the ”learning to learn” concept of model-agnostic meta-learning (MAML) into a 1DCNN, enabling effective fault detection. More specifically, the training data are transformed into numerous tasks through random sampling, and the model is trained task by task. The 1DCNN is utilized as the base learner, leveraging its superior feature extraction capability to discern task features. The first-order gradient of MAML is applied to ascertain the specific initialization parameters for each task, while the second-order gradient of MAML is used to understand the similarities and differences between all tasks’ initialization parameters. This approach equips the 1DCNN-MAML with the ability to adapt to new tasks and converge rapidly, thereby achieving swift regression prediction. We also employ the probability distribution fitting method to analyze the distribution of prediction residuals, thus setting the detection threshold. Based on this threshold, warnings can be issued for faults in WT generators. We used supervisory control and data acquisition (SCADA) data from the Liaoning wind farm in China to validate the robustness and portability of the proposed model. Experimental outcomes indicate that, compared with Reptile, FOMAML, LSTM-MAML, 1DCNN, and LSTM, our proposed method can detect faults earliest across different wind turbines and has the lowest FPR and FNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮完成签到,获得积分10
2秒前
李健应助兰生禾采纳,获得10
2秒前
3秒前
皮皮发布了新的文献求助30
4秒前
54发布了新的文献求助10
4秒前
4秒前
张琳静完成签到 ,获得积分10
6秒前
LEL发布了新的文献求助10
6秒前
7秒前
爱学习的瑞瑞子完成签到 ,获得积分0
8秒前
搜集达人应助ocelia采纳,获得10
8秒前
8秒前
FashionBoy应助叶梦凡采纳,获得10
11秒前
tico完成签到,获得积分10
12秒前
小可发布了新的文献求助50
12秒前
阿玖完成签到 ,获得积分10
13秒前
Jerry完成签到,获得积分10
13秒前
15秒前
神勇的半莲完成签到,获得积分10
15秒前
Yuna发布了新的文献求助20
17秒前
17秒前
18秒前
dominate完成签到,获得积分10
18秒前
温水煮青蛙完成签到,获得积分0
19秒前
思源应助Moss采纳,获得10
19秒前
19秒前
19秒前
21秒前
程程程完成签到,获得积分10
21秒前
22秒前
Ava应助研友_VZGvVn采纳,获得30
23秒前
23秒前
水色发布了新的文献求助10
24秒前
24秒前
24秒前
烦烦发布了新的文献求助10
25秒前
叶梦凡发布了新的文献求助10
26秒前
利好完成签到 ,获得积分10
28秒前
傲娇初阳发布了新的文献求助10
28秒前
daring发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819191
求助须知:如何正确求助?哪些是违规求助? 4128204
关于积分的说明 12775943
捐赠科研通 3867722
什么是DOI,文献DOI怎么找? 2128315
邀请新用户注册赠送积分活动 1149148
关于科研通互助平台的介绍 1044885