Nanostructured coating strategies of cathode for improved sodium ion battery performance

阴极 材料科学 阳极 涂层 电化学 电解质 钠离子电池 储能 化学工程 纳米技术 电池(电) 化学 法拉第效率 电极 功率(物理) 物理 工程类 物理化学 量子力学
作者
Vimal K. Tiwari,Rajendra Kumar Singh
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:471: 144592-144592 被引量:39
标识
DOI:10.1016/j.cej.2023.144592
摘要

Owing to scarce and expensive lithium based energy storage system, sodium ion batteries have gained attention as a potential alternative, leveraging their low cost components including abundant sodium as anode over competing energy storage technologies. However, structural instability, low electronic and ionic conductivity, severe polarization and low operating potential have significantly limited their practical application. The highly oxidative nature, low tap density and temperature instability of prussian blue, poor electronic conductivity of polyanions and iron-based fluoride based cathode materials have severe capacity fading and need to be optimized for better electrochemical performance. To overcome these challenges, surface engineering of cathode materials through nanostructured organic and inorganic coating have been explored as a means to improve their performance which provide uniform state of charge distribution and strength to cathode, which facilitates fast transport of electrons and ions and also prevents the transition metals dissolution and undesirable side reactions at the interface of cathode and electrolyte. These nanostructured coatings, made of compounds such as oxides, polyanions, conducting polymers and carbon materials have been widely exploited on various cathodes by using solution-phase mixing, Atomic layer deposition (ALD), Physical vapor deposition (PVD) techniques, etc. This review concludes a systematic comparison of different types of nanostructured coating on cathodes and their impact on electrochemical performance with the aim of exploring the potential for practical application of sodium ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻小丸子完成签到 ,获得积分10
1秒前
生化危机始作俑者完成签到,获得积分10
3秒前
Owen应助谢富杰采纳,获得10
3秒前
4秒前
snoke发布了新的文献求助10
5秒前
66完成签到,获得积分10
5秒前
鲁滨逊完成签到 ,获得积分10
5秒前
少十七完成签到,获得积分10
6秒前
6秒前
7秒前
Mao完成签到 ,获得积分10
7秒前
tata0215完成签到 ,获得积分10
8秒前
高兴问凝完成签到,获得积分20
9秒前
高兴问凝发布了新的文献求助10
12秒前
12秒前
往前走别回头完成签到,获得积分10
13秒前
man完成签到 ,获得积分10
14秒前
东东完成签到,获得积分10
14秒前
66发布了新的文献求助10
14秒前
一点完成签到,获得积分10
15秒前
科研小白完成签到,获得积分10
16秒前
xmy完成签到,获得积分10
16秒前
17秒前
tcf完成签到,获得积分10
20秒前
大力便当发布了新的文献求助10
24秒前
24秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
25秒前
项目完成签到,获得积分20
25秒前
26秒前
lht完成签到 ,获得积分10
28秒前
项目发布了新的文献求助10
30秒前
大力便当完成签到,获得积分10
31秒前
yiryir完成签到 ,获得积分10
32秒前
科研通AI5应助yumiao采纳,获得10
36秒前
清秀的不言完成签到 ,获得积分10
37秒前
hanshishengye完成签到 ,获得积分10
39秒前
40秒前
思源应助小奇采纳,获得10
40秒前
AFong发布了新的文献求助10
44秒前
云不暇完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290