Molformer: Motif-Based Transformer on 3D Heterogeneous Molecular Graphs

计算机科学 主题(音乐) 利用 变压器 理论计算机科学 同种类的 分子图 图形 人工智能 数学 物理 声学 计算机安全 量子力学 组合数学 电压
作者
Fang Wu,Dragomir Radev,Stan Z. Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (4): 5312-5320 被引量:2
标识
DOI:10.1609/aaai.v37i4.25662
摘要

Procuring expressive molecular representations underpins AI-driven molecule design and scientific discovery. The research mainly focuses on atom-level homogeneous molecular graphs, ignoring the rich information in subgraphs or motifs. However, it has been widely accepted that substructures play a dominant role in identifying and determining molecular properties. To address such issues, we formulate heterogeneous molecular graphs (HMGs) and introduce a novel architecture to exploit both molecular motifs and 3D geometry. Precisely, we extract functional groups as motifs for small molecules and employ reinforcement learning to adaptively select quaternary amino acids as motif candidates for proteins. Then HMGs are constructed with both atom-level and motif-level nodes. To better accommodate those HMGs, we introduce a variant of the Transformer named Molformer, which adopts a heterogeneous self-attention layer to distinguish the interactions between multi-level nodes. Besides, it is also coupled with a multi-scale mechanism to capture fine-grained local patterns with increasing contextual scales. An attentive farthest point sampling algorithm is also proposed to obtain the molecular representations. We validate Molformer across a broad range of domains, including quantum chemistry, physiology, and biophysics. Extensive experiments show that Molformer outperforms or achieves the comparable performance of several state-of-the-art baselines. Our work provides a promising way to utilize informative motifs from the perspective of multi-level graph construction. The code is available at https://github.com/smiles724/Molformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny完成签到,获得积分10
2秒前
结实的忆之完成签到,获得积分10
2秒前
活力的妙之完成签到 ,获得积分10
5秒前
专注的觅云完成签到 ,获得积分10
6秒前
挽忆逍遥完成签到 ,获得积分10
7秒前
华仔应助蔡蔡不菜菜采纳,获得10
8秒前
shouren完成签到,获得积分10
11秒前
Rainsky完成签到 ,获得积分10
13秒前
Max7完成签到,获得积分10
15秒前
Dong完成签到 ,获得积分10
18秒前
鱼雷完成签到,获得积分10
18秒前
18秒前
研友_O8Wz4Z完成签到,获得积分10
21秒前
郭磊完成签到 ,获得积分10
22秒前
Buduan完成签到,获得积分10
23秒前
Jimmy_King完成签到 ,获得积分10
23秒前
Need_Knowledge完成签到,获得积分10
23秒前
fbwg完成签到,获得积分10
24秒前
Zhusy发布了新的文献求助10
24秒前
遇见无铭发布了新的文献求助30
26秒前
26秒前
26秒前
橡木wll完成签到 ,获得积分10
28秒前
丘比特应助Maestro_S采纳,获得10
30秒前
庾尔风发布了新的文献求助10
30秒前
小事完成签到 ,获得积分10
33秒前
35秒前
稳重的蛟凤应助Sylvia卉采纳,获得10
36秒前
西柚完成签到 ,获得积分10
37秒前
37秒前
大个应助庾尔风采纳,获得10
39秒前
张小闲完成签到 ,获得积分10
39秒前
笑点低蜜蜂完成签到,获得积分10
39秒前
NexusExplorer应助Zhusy采纳,获得10
40秒前
Yanssrer完成签到,获得积分10
40秒前
大白发布了新的文献求助10
40秒前
Ava应助威武QY采纳,获得10
49秒前
Jeremy完成签到 ,获得积分10
49秒前
勤奋的猫咪完成签到 ,获得积分10
51秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866771
求助须知:如何正确求助?哪些是违规求助? 6427164
关于积分的说明 15654988
捐赠科研通 4981770
什么是DOI,文献DOI怎么找? 2686743
邀请新用户注册赠送积分活动 1629564
关于科研通互助平台的介绍 1587566