亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating plan complexity and dosiomics features with deep learning in patient-specific quality assurance for volumetric modulated arc therapy

医学 质量保证 核医学 灵敏度(控制系统) 人工智能 计算机科学 病理 外部质量评估 电子工程 工程类
作者
Ce Han,Ji Zhang,Bing Yu,Haoze Zheng,Yibo Wu,Zhixi Lin,Boda Ning,Jinling Yi,Congying Xie,Xiance Jin
出处
期刊:Radiation Oncology [Springer Nature]
卷期号:18 (1) 被引量:6
标识
DOI:10.1186/s13014-023-02311-7
摘要

Abstract Purpose To investigate the feasibility and performance of deep learning (DL) models combined with plan complexity (PC) and dosiomics features in the patient-specific quality assurance (PSQA) for patients underwent volumetric modulated arc therapy (VMAT). Methods Total of 201 VMAT plans with measured PSQA results were retrospectively enrolled and divided into training and testing sets randomly at 7:3. PC metrics were calculated using house-built algorithm based on Matlab. Dosiomics features were extracted and selected using Random Forest (RF) from planning target volume (PTV) and overlap regions with 3D dose distributions. The top 50 dosiomics and 5 PC features were selected based on feature importance screening. A DL DenseNet was adapted and trained for the PSQA prediction. Results The measured average gamma passing rate (GPR) of these VMAT plans was 97.94% ± 1.87%, 94.33% ± 3.22%, and 87.27% ± 4.81% at the criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively. Models with PC features alone demonstrated the lowest area under curve (AUC). The AUC and sensitivity of PC and dosiomics (D) combined model at 2%/2 mm were 0.915 and 0.833, respectively. The AUCs of DL models were improved from 0.943, 0.849, 0.841 to 0.948, 0.890, 0.942 in the combined models (PC + D + DL) at 3%/3 mm, 3%/2 mm and 2%/2 mm, respectively. A best AUC of 0.942 with a sensitivity, specificity and accuracy of 100%, 81.8%, and 83.6% was achieved with combined model (PC + D + DL) at 2%/2 mm. Conclusions Integrating DL with dosiomics and PC metrics is promising in the prediction of GPRs in PSQA for patients underwent VMAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的西牛完成签到,获得积分10
刚刚
小二郎应助积极的西牛采纳,获得10
3秒前
yyw完成签到,获得积分10
5秒前
LPPQBB应助科研通管家采纳,获得200
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
8秒前
yyw发布了新的文献求助10
10秒前
17秒前
小杨完成签到 ,获得积分10
31秒前
ooooozhubi完成签到 ,获得积分10
36秒前
drirshad完成签到,获得积分10
45秒前
Dominant完成签到,获得积分10
1分钟前
共享精神应助慕青采纳,获得10
1分钟前
1分钟前
干净的烧鹅完成签到,获得积分10
1分钟前
小蜻蜓发布了新的文献求助30
2分钟前
2分钟前
小蜻蜓发布了新的文献求助30
2分钟前
SciGPT应助pursu采纳,获得30
2分钟前
小蜻蜓发布了新的文献求助30
3分钟前
3分钟前
鹏笑发布了新的文献求助10
3分钟前
4分钟前
5分钟前
yinjs158完成签到,获得积分10
5分钟前
高大的羿发布了新的文献求助10
5分钟前
5分钟前
Paris完成签到 ,获得积分10
5分钟前
Mingyue123发布了新的文献求助10
5分钟前
柯语雪完成签到 ,获得积分10
5分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
6分钟前
Fairy完成签到,获得积分10
7分钟前
小二郎应助高大的羿采纳,获得10
7分钟前
7分钟前
WXKennyS发布了新的文献求助10
7分钟前
王饱饱完成签到 ,获得积分10
8分钟前
ljl86400完成签到,获得积分10
8分钟前
8分钟前
pursu发布了新的文献求助30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357085
求助须知:如何正确求助?哪些是违规求助? 4488652
关于积分的说明 13972405
捐赠科研通 4389765
什么是DOI,文献DOI怎么找? 2411715
邀请新用户注册赠送积分活动 1404271
关于科研通互助平台的介绍 1378414