Enhancing Job Recommendation through LLM-based Generative Adversarial Networks

对抗制 计算机科学 生成语法 质量(理念) 生成对抗网络 任务(项目管理) 盈利能力指数 人工智能 数据科学 万维网 深度学习 工程类 业务 哲学 系统工程 认识论 财务
作者
Yingpeng Du,Di Luo,Rui Yan,Hongzhi Liu,Yang Song,Hengshu Zhu,Jie Zhang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2307.10747
摘要

Recommending suitable jobs to users is a critical task in online recruitment platforms, as it can enhance users' satisfaction and the platforms' profitability. While existing job recommendation methods encounter challenges such as the low quality of users' resumes, which hampers their accuracy and practical effectiveness. With the rapid development of large language models (LLMs), utilizing the rich external knowledge encapsulated within them, as well as their powerful capabilities of text processing and reasoning, is a promising way to complete users' resumes for more accurate recommendations. However, directly leveraging LLMs to enhance recommendation results is not a one-size-fits-all solution, as LLMs may suffer from fabricated generation and few-shot problems, which degrade the quality of resume completion. In this paper, we propose a novel LLM-based approach for job recommendation. To alleviate the limitation of fabricated generation for LLMs, we extract accurate and valuable information beyond users' self-description, which helps the LLMs better profile users for resume completion. Specifically, we not only extract users' explicit properties (e.g., skills, interests) from their self-description but also infer users' implicit characteristics from their behaviors for more accurate and meaningful resume completion. Nevertheless, some users still suffer from few-shot problems, which arise due to scarce interaction records, leading to limited guidance for the models in generating high-quality resumes. To address this issue, we propose aligning unpaired low-quality with high-quality generated resumes by Generative Adversarial Networks (GANs), which can refine the resume representations for better recommendation results. Extensive experiments on three large real-world recruitment datasets demonstrate the effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tongzzzxx完成签到,获得积分10
刚刚
1秒前
wanci应助啦啦啦啦啦采纳,获得10
1秒前
ZZD完成签到,获得积分20
3秒前
不懂完成签到,获得积分10
3秒前
3秒前
ding应助mylpp采纳,获得10
4秒前
5秒前
6秒前
ZZD发布了新的文献求助10
6秒前
6秒前
酷波er应助浑天与采纳,获得10
6秒前
7秒前
hhdr发布了新的文献求助10
8秒前
光翟君发布了新的文献求助10
10秒前
10秒前
整齐哑铃发布了新的文献求助10
11秒前
13秒前
14秒前
小马甲应助范棒棒采纳,获得10
14秒前
14秒前
科目三应助John采纳,获得10
14秒前
搜集达人应助FF采纳,获得10
14秒前
小马完成签到,获得积分10
15秒前
16秒前
周静文发布了新的文献求助10
16秒前
科研通AI5应助周凡淇采纳,获得10
17秒前
科研通AI5应助周凡淇采纳,获得10
17秒前
zyy发布了新的文献求助10
18秒前
18秒前
无花果应助zzzrrr采纳,获得10
18秒前
在水一方应助wzg666采纳,获得10
19秒前
顾矜应助sober采纳,获得10
19秒前
冷艳善若完成签到,获得积分10
20秒前
搜集达人应助感性的若云采纳,获得10
20秒前
hu发布了新的文献求助10
20秒前
20秒前
朱志杰完成签到 ,获得积分10
21秒前
ggun发布了新的文献求助10
22秒前
shuaixiaoyu发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702958
求助须知:如何正确求助?哪些是违规求助? 4070688
关于积分的说明 12586708
捐赠科研通 3771039
什么是DOI,文献DOI怎么找? 2082722
邀请新用户注册赠送积分活动 1110134
科研通“疑难数据库(出版商)”最低求助积分说明 988129