亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum recurrent neural networks for sequential learning

计算机科学 循环神经网络 深度学习 量子 量子机器学习 人工智能 人工神经网络 量子电路 量子计算机 机器学习 量子网络 量子力学 物理
作者
Yanan Li,Zhimin Wang,Rongbing Han,Shangshang Shi,Jiaxin Li,Ruimin Shang,Haiyong Zheng,Guoqiang Zhong,Yu Gu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 148-161
标识
DOI:10.1016/j.neunet.2023.07.003
摘要

Quantum neural network (QNN) is one of the promising directions where the near-term noisy intermediate-scale quantum (NISQ) devices could find advantageous applications against classical resources. Recurrent neural networks are the most fundamental networks for sequential learning, but up to now there is still a lack of canonical model of quantum recurrent neural network (QRNN), which certainly restricts the research in the field of quantum deep learning. In the present work, we propose a new kind of QRNN which would be a good candidate as the canonical QRNN model, where, the quantum recurrent blocks (QRBs) are constructed in the hardware-efficient way, and the QRNN is built by stacking the QRBs in a staggered way that can greatly reduce the algorithm’s requirement with regard to the coherent time of quantum devices. That is, our QRNN is much more accessible on NISQ devices. Furthermore, the performance of the present QRNN model is verified concretely using three different kinds of classical sequential data, i.e., meteorological indicators, stock price, and text categorization. The numerical experiments show that our QRNN achieves much better performance in prediction (classification) accuracy against the classical RNN and state-of-the-art QNN models for sequential learning, and can predict the changing details of temporal sequence data. The practical circuit structure and superior performance indicate that the present QRNN is a promising learning model to find quantum advantageous applications in the near term.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sailingluwl完成签到,获得积分10
9秒前
夜休2024完成签到 ,获得积分10
16秒前
Lucas应助Ganfei采纳,获得30
44秒前
科研通AI6应助秋日思语采纳,获得10
1分钟前
1分钟前
丘比特应助ST采纳,获得10
1分钟前
田雪发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
LU完成签到,获得积分10
1分钟前
1分钟前
所所应助苗条的契采纳,获得10
1分钟前
秦梭璋完成签到 ,获得积分10
1分钟前
ST发布了新的文献求助10
1分钟前
2分钟前
苗条的契完成签到 ,获得积分10
2分钟前
2分钟前
jyy发布了新的文献求助10
2分钟前
Kevin完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
余馨怡发布了新的文献求助10
3分钟前
MchemG举报咕咕求助涉嫌违规
3分钟前
秋日思语发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI5应助秋日思语采纳,获得10
4分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
4分钟前
情怀应助baozi采纳,获得10
4分钟前
5分钟前
简单的皮皮虾完成签到 ,获得积分10
5分钟前
5分钟前
月亮门完成签到 ,获得积分10
5分钟前
baozi发布了新的文献求助10
5分钟前
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211087
求助须知:如何正确求助?哪些是违规求助? 4387655
关于积分的说明 13663050
捐赠科研通 4247697
什么是DOI,文献DOI怎么找? 2330440
邀请新用户注册赠送积分活动 1328218
关于科研通互助平台的介绍 1281049