Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage

材料科学 双层 自愈水凝胶 复合材料 摩擦学 各向异性 软骨 润滑 图层(电子) 承重 物理 解剖 高分子化学 生物 医学 量子力学 遗传学
作者
Qin Chen,Xinyue Zhang,Kai Chen,Cunao Feng,Dagang Wang,Jianwei Qi,Xiaowei Li,Xiaoduo Zhao,Zhimin Chai,Dekun Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (46): 52347-52358 被引量:43
标识
DOI:10.1021/acsami.2c13641
摘要

Natural articular cartilages exhibit extraordinary lubricating properties and excellent load-bearing capacity based on their penetrated surface lubricated biomacromolecules and gradient-oriented hierarchical structure. Hydrogels are considered as the most promising cartilage replacement materials due to their excellent flexibility, good biocompatibility, and low friction coefficient. However, the construction of high-strength, low-friction hydrogels to mimic cartilage is still a great challenge. Here, inspired by the structure and functions of natural articular cartilage, anisotropic hydrogels with horizontal and vertical orientation structure were constructed layer by layer and bonded with each other, successfully developing a bilayer oriented heterogeneous hydrogel with a high load-bearing capacity, low friction, and excellent fatigue resistance. The bilayer hydrogel exhibited a high compressive strength of 5.21 ± 0.45 MPa and a compressive modulus of 4.06 ± 0.31 MPa due to the enhancement mechanism of the anisotropic structure within the bottom anisotropic hydrogel. Moreover, based on the synergistic effect of the high load-bearing capacity of the bottom layer and the lubrication of the surface layer, the bilayer hydrogel possesses excellent biotribological properties in hard/soft (0.032) and soft/soft (0.028) contact, which is close to that of natural cartilage. It is worth noting that the bilayer oriented heterogeneous hydrogel is able to withstand repeated loading without fatigue crack. Therefore, this work could open up a new avenue for constructing cartilage-like materials with both high strength and low friction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Hello应助瘦瘦友儿采纳,获得10
2秒前
onestepcloser完成签到 ,获得积分10
3秒前
4秒前
汤泽琪发布了新的文献求助10
4秒前
上善若火完成签到 ,获得积分10
6秒前
迟雨烟暮发布了新的文献求助20
9秒前
100关闭了100文献求助
9秒前
帅气西牛完成签到,获得积分10
9秒前
大个应助汤泽琪采纳,获得10
13秒前
14秒前
colormeblue完成签到,获得积分10
18秒前
23秒前
小碗完成签到 ,获得积分10
23秒前
24秒前
25秒前
丘比特应助麻瓜X采纳,获得10
26秒前
CipherSage应助星黛露采纳,获得10
27秒前
28秒前
28秒前
哔哔鱼发布了新的文献求助10
28秒前
任性的元冬完成签到,获得积分20
28秒前
aura完成签到 ,获得积分10
29秒前
小樊同学发布了新的文献求助10
30秒前
31秒前
丰富的小甜瓜完成签到,获得积分10
31秒前
32秒前
icecream发布了新的文献求助10
33秒前
英俊的铭应助任性的元冬采纳,获得10
34秒前
科研通AI5应助初初见你采纳,获得10
35秒前
木木三发布了新的文献求助10
36秒前
雄i完成签到,获得积分10
36秒前
ShiRz发布了新的文献求助10
37秒前
38秒前
很傻的狗完成签到,获得积分10
39秒前
ABC完成签到,获得积分10
41秒前
苹果巧蕊完成签到 ,获得积分10
43秒前
英俊的铭应助闫晓丽采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959