Modeling of a multi-parameter chaotic optoelectronic oscillator based on the Fourier neural operator

人工神经网络 非线性系统 操作员(生物学) 混乱的 控制理论(社会学) 一般化 李雅普诺夫指数 物理 傅里叶级数 计算机科学 数学 数学分析 量子力学 人工智能 抑制因子 基因 化学 转录因子 控制(管理) 生物化学
作者
Jiacheng Feng,Lin Jiang,Lianshan Yan,Anlin Yi,Song-Sui Li,Wei Pan,Bin Luo,Yan Pan,Bingjie Xu,Lilin Yi,Longsheng Wang,Anbang Wang,Yuncai Wang
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:30 (25): 44798-44798 被引量:6
标识
DOI:10.1364/oe.474053
摘要

A model construction scheme of chaotic optoelectronic oscillator (OEO) based on the Fourier neural operator (FNO) is proposed. Different from the conventional methods, we learn the nonlinear dynamics of OEO (actual components) in a data-driven way, expecting to obtain a multi-parameter OEO model for generating chaotic carrier with high-efficiency and low-cost. FNO is a deep learning architecture which utilizes neural network as a parameter structure to learn the trajectory of the family of equations from training data. With the assistance of FNO, the nonlinear dynamics of OEO characterized by differential delay equation can be modeled easily. In this work, the maximal Lyapunov exponent is applied to judge whether these time series have chaotic behavior, and the Pearson correlation coefficient ( PCC ) is introduced to evaluate the modeling performance. Compare with long and short-term memory (LSTM), FNO is not only superior to LSTM in modeling accuracy, but also requires less training data. Subsequently, we analyze the modeling performance of FNO under different feedback gains and time delays. Both numerical and experimental results show that the PCC can be greater than 0.99 in the case of low feedback gain. Next, we further analyze the influence of different system oscillation frequencies, and the generalization ability of FNO is also analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抱小熊睡觉完成签到,获得积分10
刚刚
1秒前
Joker_Li完成签到,获得积分10
1秒前
科研通AI5应助Vine采纳,获得10
1秒前
平淡翠风发布了新的文献求助10
1秒前
J.J完成签到,获得积分10
2秒前
林洁佳发布了新的文献求助10
2秒前
4秒前
yu完成签到,获得积分20
4秒前
george发布了新的文献求助10
4秒前
67完成签到,获得积分10
4秒前
7秒前
jenningseastera应助67采纳,获得10
8秒前
贪玩的语蕊完成签到,获得积分10
8秒前
9秒前
LXY171完成签到,获得积分10
10秒前
11秒前
11秒前
小蘑菇应助Possession采纳,获得10
11秒前
11秒前
13秒前
13秒前
Vine发布了新的文献求助10
13秒前
称心涵柳发布了新的文献求助10
14秒前
14秒前
14秒前
JamesPei应助糖醋可乐采纳,获得10
15秒前
大力的采柳关注了科研通微信公众号
15秒前
15秒前
慕青应助洋葱超可爱采纳,获得10
16秒前
科研通AI5应助george采纳,获得10
16秒前
科研助手6应助111采纳,获得10
16秒前
Hsu完成签到,获得积分10
16秒前
17秒前
zhao发布了新的文献求助10
17秒前
18秒前
hhhh发布了新的文献求助10
18秒前
2889580752发布了新的文献求助10
19秒前
科研通AI5应助称心涵柳采纳,获得10
19秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800124
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10324980
捐赠科研通 3061918
什么是DOI,文献DOI怎么找? 1680596
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509