已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Co-learning of appearance and shape for precise ejection fraction estimation from echocardiographic sequences

分割 人工智能 计算机科学 判别式 模式识别(心理学) 一致性(知识库) 管道(软件) 计算机视觉 程序设计语言
作者
Hongrong Wei,Junqiang Ma,Yongjin Zhou,Wufeng Xue,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102686-102686 被引量:13
标识
DOI:10.1016/j.media.2022.102686
摘要

Accurate estimation of ejection fraction (EF) from echocardiography is of great importance for evaluation of cardiac function. It is usually obtained by the Simpson's bi-plane method based on the segmentation of the left ventricle (LV) in two keyframes. However, obtaining accurate EF estimation from echocardiography is challenging due to (1) noisy appearance in ultrasound images, (2) temporal dynamic movement of myocardium, (3) sparse annotation of the full sequence, and (4) potential quality degradation during scanning. In this paper, we propose a multi-task semi-supervised framework, which is denoted as MCLAS, for precise EF estimation from echocardiographic sequences of two cardiac views. Specifically, we first propose a co-learning mechanism to explore the mutual benefits of cardiac segmentation and myocardium tracking iteratively on appearance level and shape level, therefore alleviating the noisy appearance and enforcing the temporal consistency of the segmentation results. This temporal consistency, as shown in our work, is critical for precise EF estimation. Then we propose two auxiliary tasks for the encoder, (1) view classification to help extract the discriminative features of each view, and automatize the whole pipeline of EF estimation in clinical practice, and (2) EF regression to help regularize the spatiotemporal embedding of the echocardiographic sequence. Both two auxiliary tasks can improve the segmentation-based EF prediction, especially for sequences of poor quality. Our method is capable of automating the whole pipeline of EF estimation, from view identification, cardiac structures segmentation to EF calculation. The effectiveness of our method is validated in aspects of segmentation, tracking, consistency analysis, and clinical parameters estimation. When compared with existing methods, our method shows obvious superiority for LV volumes on ED and ES phases, and EF estimation, with Pearson correlation of 0.975, 0.983 and 0.946, respectively. This is a significant improvement for echocardiography-based EF estimation and improves the potential of automated EF estimation in clinical practice. Besides, our method can obtain accurate and temporal-consistent segmentation for the in-between frames, which enables it for cardiac dynamic function evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gz000111完成签到,获得积分10
2秒前
酷波er应助Ccc采纳,获得30
2秒前
西格完成签到 ,获得积分10
3秒前
123456完成签到,获得积分10
5秒前
骆驼林子完成签到 ,获得积分10
5秒前
Yan完成签到,获得积分10
7秒前
科研通AI6.2应助周城采纳,获得10
8秒前
13秒前
16秒前
18秒前
积雪完成签到 ,获得积分10
19秒前
26秒前
希望天下0贩的0应助ne采纳,获得10
26秒前
27秒前
庄建煌完成签到,获得积分10
28秒前
hhh完成签到,获得积分10
30秒前
咚咚蛋发布了新的文献求助10
31秒前
37秒前
Shy完成签到,获得积分10
37秒前
38秒前
xiayimiao发布了新的文献求助10
40秒前
43秒前
ne发布了新的文献求助10
43秒前
wanci应助咚咚蛋采纳,获得10
45秒前
45秒前
热心市民小红花应助哈哈采纳,获得10
47秒前
cz222完成签到 ,获得积分10
50秒前
Yan发布了新的文献求助10
51秒前
52秒前
Lynn完成签到 ,获得积分10
53秒前
54秒前
ding应助xiayimiao采纳,获得10
55秒前
爆米花应助科研通管家采纳,获得10
56秒前
cz111完成签到 ,获得积分10
57秒前
wangyucode完成签到,获得积分10
59秒前
诺贝尔不讲不讲完成签到,获得积分10
1分钟前
Lim1819完成签到 ,获得积分10
1分钟前
丰富靖琪完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助ne采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5860144
求助须知:如何正确求助?哪些是违规求助? 6353207
关于积分的说明 15641713
捐赠科研通 4973933
什么是DOI,文献DOI怎么找? 2682965
邀请新用户注册赠送积分活动 1626555
关于科研通互助平台的介绍 1583774