GAN review: Models and medical image fusion applications

鉴别器 计算机科学 领域(数学) 编码器 生成语法 人工智能 人工神经网络 卷积神经网络 发电机(电路理论) 深度学习 电信 数学 操作系统 探测器 物理 功率(物理) 纯数学 量子力学
作者
Tao Zhou,Qi Li,Huiling Lu,Qianru Cheng,Xiangxiang Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 134-148 被引量:118
标识
DOI:10.1016/j.inffus.2022.10.017
摘要

Generative Adversarial Network (GAN) is a research hotspot in deep generative models, which has been widely used in the field of medical image fusion. This paper summarizes GAN models from the following four aspects: firstly, the basic principles of GAN are expounded from two aspects: basic model and training process; secondly, variant GAN models are summarized into three directions (Probability Distribution Distance, Overall Network Architecture, Neural Network Structure), from the methods based on f-divergence, the methods based on IPM, Single-Generator and Dual-Discriminators GAN, Multi-Generators and Single-Discriminator GAN, Multi-Generators and Multi-Discriminators GAN, Conditional Constraint GAN, Convolutional Neural Network structure GAN and Auto-Encoder Neural Network structure GAN are eight dimensions to summarize the typical models in recent years; thirdly, the advantages and application of GAN models in the field of medical image fusion are explored from three aspects; fourthly, the main challenges faced by GAN and the challenges faced by GAN models in medical image fusion field are discussed and the future prospects are given. This paper systematically summarizes various models of GAN, advantages and challenges of GAN models in medical image fusion field, which is very important for the future research of GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅尝离白发布了新的文献求助10
1秒前
1秒前
焱焱发布了新的文献求助10
5秒前
Swear123发布了新的文献求助10
5秒前
烙饼完成签到 ,获得积分10
5秒前
爱丽丝敏发布了新的文献求助10
6秒前
失眠夜玉完成签到,获得积分10
6秒前
8秒前
10秒前
李旭然发布了新的文献求助10
11秒前
赘婿应助明理背包采纳,获得30
13秒前
李健应助焱焱采纳,获得10
14秒前
16秒前
豆子发布了新的文献求助10
17秒前
18秒前
20秒前
hisheyw发布了新的文献求助10
21秒前
矮小的凡阳完成签到 ,获得积分10
23秒前
白兔奶糖发布了新的文献求助10
24秒前
打打应助小七采纳,获得10
24秒前
25秒前
刻苦的嫣发布了新的文献求助10
25秒前
Ethanyoyo0917完成签到,获得积分10
26秒前
26秒前
27秒前
bkagyin应助nihao采纳,获得10
28秒前
无限安蕾完成签到,获得积分10
28秒前
木之尹完成签到 ,获得积分10
30秒前
31秒前
所所应助lwg采纳,获得10
34秒前
34秒前
研友_VZG7GZ应助腾腾腾采纳,获得30
35秒前
RR发布了新的文献求助10
36秒前
37秒前
核桃应助zzzk采纳,获得10
37秒前
领导范儿应助白兔奶糖采纳,获得10
38秒前
38秒前
易烊干洗发布了新的文献求助30
38秒前
AnyYuan完成签到 ,获得积分10
39秒前
科目三应助balko采纳,获得10
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354991
关于积分的说明 10373724
捐赠科研通 3071509
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811345
科研通“疑难数据库(出版商)”最低求助积分说明 766619