A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks

计算机科学 风力发电 因子图 人工智能 稳健性(进化) 一般化 图形 强化学习 风电预测 集成学习 机器学习 数据挖掘 电力系统 功率(物理) 算法 工程类 数学 理论计算机科学 物理 电气工程 数学分析 基因 量子力学 解码方法 化学 生物化学
作者
Chengqing Yu,Guangxi Yan,Chengming Yu,Yu Zhang,Xiwei Mi
出处
期刊:Energy [Elsevier BV]
卷期号:263: 126034-126034 被引量:91
标识
DOI:10.1016/j.energy.2022.126034
摘要

Spatiotemporal wind power prediction technology could provide technical support for wind farm energy regulation and dynamic planning. In the paper, a novel ensemble deep graph attention reinforcement learning network is designed to build a multi-factor driven spatiotemporal wind power prediction model. Firstly, the graph attention network (GAT) algorithm is applied to aggregate and extract the spatiotemporal features of the raw wind power data. Then, the extracted features were put into the gated recursion unit (GRU) and temporal convolutional network (TCN) methods to form the wind power forecasting model and the results are obtained respectively. Finally, the deep deterministic policy gradient (DDPG) algorithm integrates the forecasting results of TCN and GRU by dynamically optimizing the weight coefficients and the results are thus obtained. Based on several comparative experiments and case studies, several important conclusions are drawn: (1) GAT can effectively extract the depth feature information of spatial and temporal wind power data and optimize the results of the predictor. (2) DDPG can increase the robustness and generalization of the prediction framework by integrating GAT-TCN and GAT-GRU. (3) The proposed ensemble model can obtain accurate wind power prediction results and is better than twenty-six contrast algorithms proposed by other researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搞怪的滑板应助牛芳草采纳,获得10
3秒前
宫旭尧完成签到,获得积分10
3秒前
希望天下0贩的0应助Jey采纳,获得10
3秒前
蜜HHH完成签到 ,获得积分10
5秒前
iwaljq发布了新的文献求助10
6秒前
满意的迎南完成签到 ,获得积分10
6秒前
Orange应助飘逸店员采纳,获得10
7秒前
yuyu发布了新的文献求助10
8秒前
刘晴晴发布了新的文献求助10
8秒前
力劈华山完成签到,获得积分10
9秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
nn应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得30
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
kuangkuangfa应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
花城发布了新的文献求助20
14秒前
15秒前
Jey发布了新的文献求助10
17秒前
YANA完成签到,获得积分10
17秒前
田様应助Sene采纳,获得10
18秒前
19秒前
nyf发布了新的文献求助10
19秒前
飘逸店员发布了新的文献求助10
20秒前
猪大户应助亮皮鱼老大采纳,获得10
20秒前
20秒前
KY Mr.WANG完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942868
求助须知:如何正确求助?哪些是违规求助? 3487974
关于积分的说明 11046209
捐赠科研通 3218565
什么是DOI,文献DOI怎么找? 1778987
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542