A Novel Unsupervised Feature Selection for High-Dimensional Data Based on FCM and $k$-Nearest Neighbor Rough Sets

模式识别(心理学) k-最近邻算法 特征选择 人工智能 计算机科学 选择(遗传算法) 特征(语言学) 最近邻链算法 数据挖掘 粗集 数学 聚类分析 模糊聚类 哲学 语言学 树冠聚类算法
作者
Weihua Xu,Yang Zhang,Yuhua Qian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:7
标识
DOI:10.1109/tnnls.2024.3460796
摘要

Large amounts of high-dimensional unlabeled data typically contain only a small portion of truly effective information. Consequently, the issue of unsupervised feature selection methods has gained significant attention in research. However, current unsupervised feature selection approaches face limitations when dealing with datasets that exhibit uneven density, and they also require substantial computational time. To address this problem, this research article proposes a feature extraction technique that combines the Fuzzy C-Means (FCM) and k -nearest neighbor rough sets. FCM is a clustering algorithm grounded in fuzzy theory, which takes into account the inherent data structure and the correlations between different features. Consequently, FCM is particularly well-suited for datasets with uneven density. Our proposed method consists of three steps. First, the FCM algorithm is used to cluster the unlabeled data. Second, a measure that evaluates the importance of features is defined and sorted based on the clustering results. Finally, redundant features are filtered using k -nearest neighbor rough sets while retaining important features, significantly reducing the running time. In addition, we designed the feature selection algorithm (KND-UFS) and conducted experiments on 12 public datasets. We compared KND-UFS with eight existing algorithms in terms of running time, classification accuracy, and the number of selected features. The experimental results provided strong evidence supporting the superior performance of the KND-UFS algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助悦己采纳,获得10
刚刚
ma完成签到,获得积分10
1秒前
Zhu发布了新的文献求助10
1秒前
西子阳完成签到,获得积分10
2秒前
零柒发布了新的文献求助10
3秒前
xpdnpu完成签到,获得积分10
4秒前
4秒前
4秒前
兀那狗子别跑完成签到,获得积分10
6秒前
小青椒应助sunsold采纳,获得30
6秒前
happyAlice完成签到,获得积分10
6秒前
善学以致用应助ALL采纳,获得10
7秒前
ayuelei发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
周小浪完成签到,获得积分10
9秒前
小蘑菇应助奋斗夏烟采纳,获得10
10秒前
11秒前
Iq发布了新的文献求助10
11秒前
boom完成签到 ,获得积分10
12秒前
科研通AI6应助ayuelei采纳,获得10
13秒前
钱儿发布了新的文献求助10
13秒前
桐桐应助ayuelei采纳,获得10
13秒前
陈杭关注了科研通微信公众号
13秒前
子车茗应助jack采纳,获得20
13秒前
13秒前
我要读博士完成签到 ,获得积分10
14秒前
ALL完成签到,获得积分10
14秒前
曲又晴完成签到,获得积分10
14秒前
大东子完成签到,获得积分10
15秒前
寒冷半雪完成签到,获得积分10
15秒前
余松林完成签到,获得积分10
16秒前
YANGNASH发布了新的文献求助10
17秒前
17秒前
王一发布了新的文献求助10
17秒前
科研通AI2S应助俟天晴采纳,获得10
19秒前
深情安青应助岁岁知采纳,获得10
21秒前
日照金峰发布了新的文献求助10
22秒前
充电宝应助WT采纳,获得30
24秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547686
求助须知:如何正确求助?哪些是违规求助? 3978585
关于积分的说明 12319234
捐赠科研通 3647114
什么是DOI,文献DOI怎么找? 2008560
邀请新用户注册赠送积分活动 1044062
科研通“疑难数据库(出版商)”最低求助积分说明 932684