A Novel Unsupervised Feature Selection for High-Dimensional Data Based on FCM and $k$-Nearest Neighbor Rough Sets

模式识别(心理学) k-最近邻算法 特征选择 人工智能 计算机科学 选择(遗传算法) 特征(语言学) 最近邻链算法 数据挖掘 粗集 数学 聚类分析 模糊聚类 哲学 语言学 树冠聚类算法
作者
Weihua Xu,Yang Zhang,Yuhua Qian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tnnls.2024.3460796
摘要

Large amounts of high-dimensional unlabeled data typically contain only a small portion of truly effective information. Consequently, the issue of unsupervised feature selection methods has gained significant attention in research. However, current unsupervised feature selection approaches face limitations when dealing with datasets that exhibit uneven density, and they also require substantial computational time. To address this problem, this research article proposes a feature extraction technique that combines the Fuzzy C-Means (FCM) and k -nearest neighbor rough sets. FCM is a clustering algorithm grounded in fuzzy theory, which takes into account the inherent data structure and the correlations between different features. Consequently, FCM is particularly well-suited for datasets with uneven density. Our proposed method consists of three steps. First, the FCM algorithm is used to cluster the unlabeled data. Second, a measure that evaluates the importance of features is defined and sorted based on the clustering results. Finally, redundant features are filtered using k -nearest neighbor rough sets while retaining important features, significantly reducing the running time. In addition, we designed the feature selection algorithm (KND-UFS) and conducted experiments on 12 public datasets. We compared KND-UFS with eight existing algorithms in terms of running time, classification accuracy, and the number of selected features. The experimental results provided strong evidence supporting the superior performance of the KND-UFS algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大龙完成签到,获得积分10
刚刚
fys131415完成签到 ,获得积分10
2秒前
白日焰火完成签到 ,获得积分10
3秒前
美海与鱼完成签到,获得积分10
3秒前
4秒前
Cai完成签到,获得积分10
4秒前
yuyu完成签到 ,获得积分10
10秒前
Ayn完成签到 ,获得积分10
15秒前
谨慎鹏涛完成签到 ,获得积分10
16秒前
苏子轩完成签到 ,获得积分0
24秒前
杨永佳666完成签到 ,获得积分10
27秒前
糊涂生活糊涂过完成签到 ,获得积分10
28秒前
28秒前
芳芳子呀完成签到,获得积分10
29秒前
花开无声完成签到,获得积分10
30秒前
xiaoyi完成签到 ,获得积分10
44秒前
华开放发布了新的文献求助100
44秒前
哭泣青烟完成签到 ,获得积分10
46秒前
笑点低剑完成签到 ,获得积分10
47秒前
Murphy~完成签到,获得积分10
57秒前
研友_VZG7GZ应助小文殊采纳,获得10
59秒前
巨人的背影完成签到,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
辛勤的悟空完成签到,获得积分10
1分钟前
1分钟前
舒适映寒完成签到,获得积分10
1分钟前
小琪完成签到 ,获得积分10
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
judy发布了新的文献求助10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
稳重乌冬面完成签到 ,获得积分10
1分钟前
CyberHamster完成签到,获得积分10
1分钟前
Ding-Ding完成签到,获得积分10
1分钟前
shyxia完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
leo完成签到,获得积分10
1分钟前
旺仔不甜完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369689
关于积分的说明 10456756
捐赠科研通 3089365
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251