A Robust and Rapid Grid-Based Machine Learning Approach for Inside and Off-Network Earthquakes Classification in Dynamically Changing Seismic Networks

地震位置 网格 计算机科学 预警系统 子网 地震学 稳健性(进化) 地震预警系统 地质学 实时计算 数据挖掘 诱发地震 大地测量学 电信 生物化学 化学 计算机安全 基因
作者
Daniela Annunziata,Martina Savoia,Claudio Martino,Fabio Giampaolo,Vincenzo Convertito,Francesco Piccialli,Gregory C. Beroza
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:96 (2A): 933-948
标识
DOI:10.1785/0220240173
摘要

Abstract Earthquake location and magnitude estimation are critical for seismic monitoring and emergency response. However, accurately determining the location and the magnitude of off-network earthquakes remains challenging. Seismic stations receive signals from various sources, and it is crucial to quickly discern whether events originated within the area of interest. Location determination relies on obtaining ample P- and S-wave readings to ensure accurate and dependable results. Seismic networks vary due to station changes or outages, and their variable geometry represents a constraint for traditional machine learning models, which rely on fixed data structures. This study presents a novel approach for real-time classification of local and off-network earthquakes using the first three associated P picks within an early warning scenario, and also identifying the event’s direction. To handle variable network geometry, we employ a grid structure over the seismic area. The effectiveness of our method was initially validated with data from the Italian National Seismic Network, selecting Central Italy and Messina Strait subnetworks, and from a subnetwork of the Southern California Seismic Network; it achieves an inside–outside accuracy of 95%, 93%, and 96%, and a location region accuracy of 93%, 82%, and 97%, respectively. Its robustness was further demonstrated using picks from an earthquake early warning (EEW) system, the PRobabilistic and Evolutionary early warning SysTem (PRESTo) software, to simulate real and noncataloged input data. Our method outperforms PRESTo’s first localization, showing an inside versus outside classification improvement of 9.1% for Central Italy and 20.7% for the Messina Strait. This approach provides advanced seismic monitoring that can be implemented in systems devoted to reduce the impact of damaging events as the EEW system, but also shows promise for enhancing emergency response. Indeed, being able to quickly classify earthquakes is crucial for responding promptly and effectively during emergencies, minimizing risks, and for limiting false alarms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈完成签到 ,获得积分10
5秒前
benyu完成签到,获得积分10
6秒前
口香糖探长完成签到 ,获得积分10
7秒前
WD完成签到 ,获得积分10
9秒前
11秒前
cf1991完成签到,获得积分20
11秒前
ii完成签到 ,获得积分10
12秒前
电子屎壳郎完成签到,获得积分10
12秒前
mawenting完成签到 ,获得积分10
18秒前
weng完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
cdercder应助科研通管家采纳,获得20
29秒前
凌代萱完成签到 ,获得积分10
30秒前
现实的曼安完成签到 ,获得积分10
31秒前
米里迷路完成签到 ,获得积分10
34秒前
安安完成签到,获得积分10
36秒前
北国雪未消完成签到 ,获得积分10
36秒前
buyisung完成签到 ,获得积分20
38秒前
马大翔完成签到,获得积分0
38秒前
三脸茫然完成签到 ,获得积分10
40秒前
40秒前
8D完成签到,获得积分10
41秒前
h w wang完成签到,获得积分10
43秒前
shouyu29完成签到,获得积分0
43秒前
Aha完成签到 ,获得积分10
46秒前
辛勤的泽洋完成签到 ,获得积分10
47秒前
49秒前
稳重岩完成签到 ,获得积分10
51秒前
52秒前
careyzhou完成签到 ,获得积分10
52秒前
卡卡啊发布了新的文献求助10
53秒前
dayday完成签到,获得积分10
54秒前
无辜秋珊发布了新的文献求助30
55秒前
小不完成签到 ,获得积分10
55秒前
55秒前
NexusExplorer应助soul采纳,获得10
55秒前
zheng发布了新的文献求助10
59秒前
液晶屏99完成签到,获得积分10
1分钟前
无辜秋珊完成签到,获得积分10
1分钟前
卡卡啊完成签到,获得积分20
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788426
求助须知:如何正确求助?哪些是违规求助? 3333726
关于积分的说明 10263234
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673644
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511