AIML Enabled Rapid Vehicle Aerodynamics Design Improvements

空气动力学 计算机科学 航空航天工程 汽车工程 工程类
作者
Sridhar Bijjala
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-28-0007
摘要

<div class="section abstract"><div class="htmlview paragraph">The integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies has significantly changed various industries. This study demonstrates the application of a Convolutional Neural Network (CNN) model in Computational Fluid Dynamics (CFD) to predict the drag coefficient of a complete vehicle profile. We have developed a design advisor that uses a custom 3D CNN with a U-net architecture in the DEP MeshWorks environment to predict drag coefficients (Cd) based on car shapes. This model understands the relationship between car shapes and air drag coefficients calculated using computational fluid dynamics (CFD).</div><div class="htmlview paragraph">The AI/ML-based design advisor feature has the potential to significantly decrease the time required for predicting drag coefficients by conducting CFD calculations. During the initial development phase, it will serve as an efficient tool for analyzing the correlation between multiple design proposals and aerodynamic drag forces within a short time frame. Additionally, the interactive AI/ML tool helps to streamline the creation of necessary shape parameters with minimal input and helps optimize the design of the vehicle to achieve the desired coefficient of drag values.</div><div class="htmlview paragraph">In summary, the implementation of MeshWorks AI/ML-based design advisor system will aid analysis engineers in assessing the vehicle's coefficient of drag values, while also enabling parametrization and optimization of the design. This advancement has the potential to significantly reduce processing time and alleviate the inherent procedural complexities associated with the traditional methods.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
help发布了新的文献求助10
1秒前
小小莫发布了新的文献求助10
2秒前
風起天岚完成签到,获得积分10
3秒前
Gakay完成签到,获得积分10
3秒前
猫咪老师应助kannakaco采纳,获得30
4秒前
所所应助111采纳,获得10
8秒前
Fiona完成签到 ,获得积分10
8秒前
GS完成签到,获得积分10
9秒前
脑洞疼应助Ryan采纳,获得10
9秒前
LIUJIAWEI完成签到,获得积分10
10秒前
12秒前
Xieyusen完成签到,获得积分10
14秒前
丘比特应助连翘采纳,获得10
15秒前
xiaohanzai88完成签到,获得积分10
16秒前
上官若男应助呆萌的语芹采纳,获得50
20秒前
NexusExplorer应助Ryan采纳,获得10
21秒前
22秒前
GS发布了新的文献求助50
23秒前
坤坤发布了新的文献求助10
29秒前
幽凡完成签到 ,获得积分10
31秒前
33秒前
CodeCraft应助坤坤采纳,获得10
34秒前
35秒前
未知数完成签到,获得积分20
37秒前
关天木发布了新的文献求助10
37秒前
38秒前
39秒前
坤坤完成签到,获得积分10
40秒前
QL发布了新的文献求助10
41秒前
42秒前
CHENZHIHUA发布了新的文献求助10
42秒前
43秒前
小露发布了新的文献求助10
45秒前
46秒前
hhh完成签到,获得积分10
47秒前
48秒前
十三完成签到 ,获得积分10
50秒前
CHENZHIHUA完成签到,获得积分20
50秒前
dennisysz发布了新的文献求助10
51秒前
玉灵子发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103