A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 176783-176783 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
研友_VZG7GZ应助Smiles采纳,获得10
1秒前
4秒前
蔡继海发布了新的文献求助10
5秒前
湫栗完成签到,获得积分20
5秒前
qinxie完成签到 ,获得积分10
5秒前
6秒前
Kane完成签到,获得积分10
6秒前
8秒前
可可应助梦梦采纳,获得10
9秒前
湫栗发布了新的文献求助10
9秒前
QQ发布了新的文献求助10
10秒前
潇洒的问夏完成签到 ,获得积分10
10秒前
11秒前
13秒前
13秒前
开心友儿完成签到,获得积分10
13秒前
13333完成签到 ,获得积分10
13秒前
14秒前
ss13l完成签到,获得积分10
15秒前
围炉夜话完成签到,获得积分10
16秒前
星辰大海应助狂野大雄鹰采纳,获得10
18秒前
Kun关注了科研通微信公众号
18秒前
三虎科研完成签到,获得积分10
19秒前
落日晚归舟给落日晚归舟的求助进行了留言
19秒前
Atlantis发布了新的文献求助10
20秒前
20秒前
梦梦完成签到,获得积分10
21秒前
wang666完成签到,获得积分10
23秒前
llllllb发布了新的文献求助10
25秒前
25秒前
森宝完成签到,获得积分10
25秒前
Loooong完成签到,获得积分0
27秒前
勤奋的凌翠完成签到 ,获得积分10
29秒前
29秒前
漫威蜘蛛侠完成签到,获得积分10
29秒前
30秒前
31秒前
执着的一兰完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779792
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222123
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549