Designing ASSMD Strategy for Exploring and Engineering Extreme Thermophilic Ancestral Nitrilase for Nitriles Biocatalysis

硝化酶 生物催化 嗜热菌 化学 组合化学 催化作用 生化工程 有机化学 工程类 反应机理
作者
Zi-Kai Wang,Dan-Ting Feng,Chang Su,Hui Li,Zhiming Rao,Yijian Rao,Zhen-Ming Lu,Jin‐Song Shi,Zhenghong Xu,Jin‐Song Gong
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (18): 13825-13838 被引量:18
标识
DOI:10.1021/acscatal.4c03851
摘要

Enzyme thermostability is vital for prolonged reactions and reusability. Extremozymes, known for their high thermal stability, have gained biocatalysis prominence. Extremozymes evolve under extreme conditions, possibly becoming extinct during the evolutionary process of adapting to the current environment. Fortunately, ancestral enzyme sequence reconstruction could deduce the ancestral enzyme sequence of existing enzymes through computer algorithms. Here, we designed an ancestral sequence-structure-molecule dynamics (ASSMD) strategy to unveil molecular insights into extinct ancestral enzymes in the evolutionary landscape. Furthermore, this approach was applied to explore the extremophilic ancestral nitrilase. In a dynamic flexibility trough, we obtained ASR135, an ancestral nitrilase capable of tolerating 90 °C. Combining evolution analysis and laboratory evolution, we achieved laboratory further evolution of the thermostability of ASR135 in this evolutionary event and obtained the mutant ASR135-M4 (S97E/S101A/N124H/H155Y), which exhibited hydrolytic activity at 100 °C. Mechanistic analysis revealed that ASR135-M4 exhibited the addition of salt bridge, hydrogen bond, and π-alkyl interaction tetrahedral cage and strengthening of the hydrophobic core inside the protein. These modifications resulted in a more robust interaction network between four secondary structures. In general, the ASSMD strategy holds potential for discovering high-performance nitrilases, particularly extremozymes. Additionally, the laboratory thermostability evolution of ASR135-M4 sheds light on enzyme-directed evolution and thermostability mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
可爱的函函应助ye采纳,获得10
2秒前
EKKO完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
变化发布了新的文献求助10
3秒前
英俊的铭应助怕黑犀牛采纳,获得10
4秒前
古月完成签到 ,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
平贝花应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
qing完成签到 ,获得积分10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
默问应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
文艺大白菜完成签到,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
pluto应助yide采纳,获得10
5秒前
7秒前
夜半芜凉发布了新的文献求助10
8秒前
火柴two发布了新的文献求助10
8秒前
ry发布了新的文献求助10
8秒前
夜猫子完成签到,获得积分10
9秒前
10秒前
cui发布了新的文献求助10
11秒前
12秒前
爆米花应助岳普采纳,获得10
12秒前
科研通AI6应助量子玫瑰采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243