亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Traditional, Deep Learning, and Subfield Methods for Automatically Segmenting the Hippocampus from MRI

分割 人工智能 计算机科学 神经影像学 深度学习 海马结构 海马体 假阳性悖论 模式识别(心理学) 人口 机器学习 神经科学 医学 心理学 环境卫生
作者
Sabrina Sghirripa,Gaurav Bhalerao,Ludovica Griffanti,Grace Gillis,Clare E. Mackay,Natalie L. Voets,Stephanie Wong,Mark Jenkinson
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2024.08.06.24311530
摘要

Abstract Given the relationship between hippocampal atrophy and cognitive impairment in various pathological conditions, hippocampus segmentation from MRI is an important task in neuroimaging. Manual segmentation, though considered the gold standard, is time-consuming and error-prone, leading to the development of numerous automatic segmentation methods. However, no study has yet independently compared the performance of traditional, deep learning-based, and hippocampal subfield segmentation methods within a single investigation. We evaluated nine automatic hippocampal segmentation methods (FreeSurfer, FastSurfer, FIRST, e2dhipseg, HippMapper, Hippodeep, FreeSurfer-Subfields, HippUnfold and HSF) across three datasets with manually segmented hippocampus labels. Performance metrics included overlap with manual labels, correlations between manual and automatic volumes, diagnostic group differentiation, and systematically located false positives and negatives. Most methods, especially deep learning-based ones, performed well on public datasets but showed more error and variability on unseen data. Many methods tended to over-segment, particularly at the anterior hippocampus border, but were able to distinguish between healthy controls, MCI, and dementia patients based on hippocampal volume. Our findings highlight the challenges in hippocampal segmentation from MRI and the need for more publicly accessible datasets with manual labels across diverse ages and pathological conditions. Key Messages We evaluated nine automatic hippocampal segmentation methods, including traditional and deep learning-based approaches, across three datasets with manually segmented hippocampus labels. While deep learning-based methods perform well on public datasets, they show more error and variability on unseen data that is more reflective of a clinical population. More publicly accessible datasets with manual labels are required for automatic hippocampal segmentations to be accurate and reliable, particularly for clinical populations. Practitioner Points Although deep learning based automatic hippocampal segmentation methods offer faster processing times—a requirement for translation to clinical practice—the lack of variance within training sets (such as sample demographics and scanner sequences) currently prevents transfer of learning to novel data, such as those acquired clinically. More training data with varying demographics, scanner sequences and pathologies are required to adequately train deep learning methods to quickly, accurately and reliably segment the hippocampus for use in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
33秒前
飘逸焱完成签到 ,获得积分10
1分钟前
张海新完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
充电宝应助欣喜秋天采纳,获得10
2分钟前
涛1完成签到 ,获得积分10
2分钟前
搜集达人应助zzzzz采纳,获得10
3分钟前
3分钟前
赧赧完成签到 ,获得积分10
3分钟前
欣喜秋天发布了新的文献求助10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
4分钟前
彭于晏应助欣喜秋天采纳,获得10
4分钟前
Jolly发布了新的文献求助30
4分钟前
wanci应助555采纳,获得10
4分钟前
4分钟前
欣喜秋天发布了新的文献求助10
4分钟前
4分钟前
123123发布了新的文献求助10
5分钟前
5分钟前
123123完成签到,获得积分10
5分钟前
zzzzz发布了新的文献求助10
5分钟前
5分钟前
英俊的铭应助欣喜秋天采纳,获得10
5分钟前
5分钟前
CHX发布了新的文献求助10
5分钟前
欣喜秋天完成签到,获得积分10
5分钟前
ls完成签到,获得积分10
5分钟前
5分钟前
WYDNBDX2013发布了新的文献求助10
5分钟前
今后应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
彭于晏应助科研通管家采纳,获得10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Ava应助WYDNBDX2013采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459261
求助须知:如何正确求助?哪些是违规求助? 4564938
关于积分的说明 14297314
捐赠科研通 4490053
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424676