A tailored database combining reference compound-derived metabolite, metabolism platform and chemical characteristic of Chinese herb followed by activity screening: Application to Magnoliae Officinalis Cortex

化学 官房 草本植物 代谢物 皮质(解剖学) 传统医学 数据库 药理学 草药 生物化学 神经科学 心理学 计算机科学 医学
作者
Zhen-Zhen Xue,Yudong Shang,Yang Lan,Tao Li,Bin Yang
出处
期刊:Journal of Pharmaceutical Analysis [Elsevier BV]
卷期号:: 101066-101066
标识
DOI:10.1016/j.jpha.2024.101066
摘要

A strategy combining a tailored database and high-throughput activity screening that discover bioactive metabolites derived from Magnoliae Officinalis Cortex (MOC) was developed and implemented to rapidly profile and discover bioactive metabolites in vivo derived from traditional Chinese medicine (TCM). The strategy possessed four characteristics: 1) The tailored database consisted of metabolites derived from big data-originated reference compound, metabolites predicted in silico, and MOC chemical profile-based pseudomolecular ions. 2) When profiling MOC-derived metabolites in vivo, attentions were paid not only on prototypes of MOC compounds and metabolites directly derived from MOC compounds, as reported by most papers, but also on isomerized metabolites and the degradation products of MOC compounds as well as their derived metabolites. 3) Metabolite traceability was performed, especially to distinguish isomeric prototypes-derived metabolites, and prototypes of MOC compounds as well as phase I metabolites derived from other MOC compounds. 4) Molecular docking was utilized for high-throughput activity screening and molecular dynamic simulation as well as zebrafish model were used for verification. Using this strategy, 134 metabolites were swiftly characterized after the oral administration of MOC to rats, and several metabolites were reported for the first time. Furthermore, 17 potential active metabolites were discovered by targeting the motilin, dopamine D2, and the serotonin type 4 (5-HT4) receptors, and their bioactivities were verified using molecular dynamic simulation and a zebrafish constipation model. This study extends the application of mass spectrometry (MS) to rapidly profile TCM-derived metabolites in vivo, which will help pharmacologists rapidly discover potent metabolites from a complex matrix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐科研发布了新的文献求助10
5秒前
魔法签证1993完成签到,获得积分10
9秒前
11秒前
小蘑菇应助第八大洋采纳,获得10
14秒前
15秒前
mm完成签到 ,获得积分10
15秒前
一一一发布了新的文献求助10
16秒前
chai完成签到,获得积分10
18秒前
mariawang发布了新的文献求助50
20秒前
20秒前
lxlxllx89发布了新的文献求助200
22秒前
小兔睡了发布了新的文献求助10
25秒前
chuanxizheng发布了新的文献求助10
26秒前
holo完成签到 ,获得积分10
27秒前
怎么睡不醒完成签到 ,获得积分10
34秒前
AX完成签到,获得积分10
38秒前
40秒前
伟钧完成签到,获得积分10
41秒前
15327432191完成签到 ,获得积分10
41秒前
44秒前
bainwei完成签到,获得积分10
49秒前
天天快乐应助keira采纳,获得10
50秒前
51秒前
啦啦啦发布了新的文献求助10
51秒前
Owen应助小兔睡了采纳,获得10
52秒前
cdercder应助科研通管家采纳,获得10
53秒前
cdercder应助科研通管家采纳,获得10
53秒前
cdercder应助科研通管家采纳,获得10
53秒前
小蘑菇应助科研通管家采纳,获得10
53秒前
研友_VZG7GZ应助小斌仔采纳,获得10
58秒前
汉堡包应助尤瑟夫采纳,获得10
58秒前
随风完成签到,获得积分10
1分钟前
lxlxllx89完成签到,获得积分10
1分钟前
坦率翠霜完成签到 ,获得积分10
1分钟前
1分钟前
大个应助dummy采纳,获得10
1分钟前
阿姨洗铁路完成签到 ,获得积分10
1分钟前
洁白的故人完成签到 ,获得积分10
1分钟前
1分钟前
小斌仔完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779653
求助须知:如何正确求助?哪些是违规求助? 3325132
关于积分的说明 10221514
捐赠科研通 3040246
什么是DOI,文献DOI怎么找? 1668703
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535