Machine learning models based on CT radiomics features for distinguishing benign and malignant vertebral compression fractures in patients with malignant tumors

医学 无线电技术 接收机工作特性 放射科 内科学
作者
Yuan Wan,Lei Miao,Huanhuan Zhang,Yanmei Wang,Xiao Li,Meng Li,Li Zhang
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851241279896
摘要

Background Radiomics has become an important tool for distinguishing benign and malignant vertebral compression fractures (VCFs). It is more clinically significant to concentrate on patients who have malignant tumors and differentiate between benign and malignant VCFs. Purpose To explore the value of multiple machine learning (ML) models based on CT radiomics features for differentiating benign and malignant VCFs in patients with malignant tumors. Material and Methods This study retrospectively analyzed 78 patients with malignant tumors accompanied by VCFs, 45 patients with benign VCFs, and 33 patients with malignant VCFs. A total of 140 lesions (86 benign lesions, 54 malignant lesions) were ultimately included in this study. All patients were divided into training sets (n = 98) and validation sets (n = 42) according to the 7:3 ratio. The radiomics features were screened and dimensioned, and multiple radiomics ML models were constructed. The receiver operating characteristic (ROC) curve was performed to assess the diagnostic performance. Results Five radiomics features were included in the model. All the ML models built have good diagnostic efficiency, among which the support vector machine (SVM) model performs better. The area under the curve (AUC), sensitivity, specificity, and accuracy in the training set were 0.908, 0.816, 0.883, and 0.857, respectively, while those in the validation set were 0.911, 0.647, 0.92, and 0.81, respectively. Conclusion A variety of ML models built based on CT radiomics features have good value for differentiating benign and malignant VCFs in malignant tumor patients, and the SVM model has a better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
洁净冬瓜完成签到,获得积分10
3秒前
阿彪发布了新的文献求助10
3秒前
威武的初兰完成签到 ,获得积分10
4秒前
vvA11发布了新的文献求助20
5秒前
溪与芮行完成签到 ,获得积分10
5秒前
爆米花应助知道采纳,获得10
6秒前
木木发布了新的文献求助10
7秒前
ccc完成签到,获得积分10
8秒前
8秒前
思源应助天真的迎天采纳,获得10
9秒前
阿彪完成签到,获得积分20
10秒前
Hello应助阿彪采纳,获得10
14秒前
来活发布了新的文献求助10
14秒前
oatmealR完成签到,获得积分20
16秒前
16秒前
周晏平完成签到,获得积分10
18秒前
Emper发布了新的文献求助10
19秒前
A_123完成签到,获得积分10
21秒前
22秒前
racchellll完成签到 ,获得积分10
23秒前
王王的狗子完成签到 ,获得积分10
23秒前
88C真是太神奇啦完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
27秒前
27秒前
刻苦天宇发布了新的文献求助10
28秒前
科研通AI5应助冷酷严青采纳,获得10
30秒前
橘橘完成签到,获得积分10
30秒前
30秒前
32秒前
zjw完成签到,获得积分10
32秒前
Felix完成签到,获得积分20
32秒前
34秒前
Emper发布了新的文献求助10
35秒前
日月发布了新的文献求助10
37秒前
叶泽完成签到,获得积分10
40秒前
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846311
求助须知:如何正确求助?哪些是违规求助? 3388664
关于积分的说明 10553799
捐赠科研通 3109159
什么是DOI,文献DOI怎么找? 1713376
邀请新用户注册赠送积分活动 824740
科研通“疑难数据库(出版商)”最低求助积分说明 775004