Rapid and non-destructive identification of Panax ginseng origins using hyperspectral imaging, visible light imaging, and X-ray imaging combined with multi-source data fusion strategies

高光谱成像 成像光谱仪 人参 化学成像 成像技术 鉴定(生物学) 遥感 计算机科学 医学 光学 物理 地质学 分光计 生物 植物 病理 替代医学
作者
Jiacong Ping,Zehua Ying,Nan Hao,Peiqi Miao,Cheng Ye,Changqing Liu,Wenlong Li
出处
期刊:Food Research International [Elsevier BV]
卷期号:192: 114758-114758 被引量:9
标识
DOI:10.1016/j.foodres.2024.114758
摘要

The geographical origin of Panax ginseng significantly influences its nutritional value and chemical composition, which in turn affects its market price. Traditional methods for analyzing these differences are often time-consuming and require substantial quantities of reagents, rendering them inefficient. Therefore, hyperspectral imaging (HSI) in conjunction with X-ray technology were used for the swift and non-destructive traceability of Panax ginseng origin. Initially, outlier samples were effectively rejected by employing a combined isolated forest algorithm and density peak clustering (DPC) algorithm. Subsequently, random forest (RF) and support vector machine (SVM) classification models were constructed using hyperspectral spectral data. These models were further optimized through the application of 72 preprocessing methods and their combinations. Additionally, to enhance the model's performance, four variable screening algorithms were employed: SelectKBest, genetic algorithm (GA), least absolute shrinkage and selection operator (LASSO), and permutation feature importance (PFI). The optimized model, utilizing second derivative, auto scaling, permutation feature importance, and support vector machine (2nd Der-AS-PFI-SVM), achieved a prediction accuracy of 93.4 %, a Kappa value of 0.876, a Brier score of 0.030, an F1 score of 0.932, and an AUC of 0.994 on an independent prediction set. Moreover, the image data (including color information and texture information) extracted from color and X-ray images were used to construct classification models and evaluate their performance. Among them, the SVM model constructed using texture information from X -ray images performed the best, and it achieved a prediction accuracy of 63.0 % on the validation set, with a Brier score of 0.181, an F1 score of 0.518, and an AUC of 0.553. By implementing mid-level fusion and high-level data fusion based on the Stacking strategy, it was found that the model employing a high-level fusion of hyperspectral spectral information and X-ray images texture information significantly outperformed the model using only hyperspectral spectral information. This advanced model attained a prediction accuracy of 95.2 %, a Kappa value of 0.912, a Brier score of 0.027, an F1 score of 0.952, and an AUC of 0.997 on the independent prediction set. In summary, this study not only provides a novel technical path for fast and non-destructive traceability of Panax ginseng origin, but also demonstrates the great potential of the combined application of HSI and X-ray technology in the field of traceability of both medicinal and food products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的信仰完成签到,获得积分10
1秒前
鲸落完成签到 ,获得积分10
2秒前
yx完成签到 ,获得积分10
5秒前
优雅的芷巧完成签到,获得积分10
6秒前
LiangRen完成签到 ,获得积分10
7秒前
搜集达人应助自信的孱采纳,获得10
8秒前
儒雅的如松完成签到 ,获得积分10
12秒前
快递乱跑完成签到 ,获得积分10
13秒前
苻醉蓝完成签到,获得积分10
14秒前
16秒前
16秒前
Zachary完成签到 ,获得积分10
19秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
araul应助科研通管家采纳,获得10
20秒前
小灰狼发布了新的文献求助10
21秒前
21秒前
dongsanmuer发布了新的文献求助10
23秒前
CHENXIN532完成签到,获得积分10
24秒前
水沝完成签到 ,获得积分10
27秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
33秒前
蓝胖胖蓝完成签到,获得积分10
33秒前
怡然白竹完成签到 ,获得积分10
33秒前
暮夕梧桐完成签到,获得积分10
34秒前
苏子轩完成签到 ,获得积分10
35秒前
将就完成签到 ,获得积分10
37秒前
HEAUBOOK完成签到,获得积分10
40秒前
choumaoo完成签到,获得积分10
42秒前
令狐冲完成签到,获得积分10
44秒前
47秒前
曾泳钧完成签到,获得积分10
48秒前
加油完成签到,获得积分10
48秒前
热情菠萝完成签到 ,获得积分10
50秒前
dongsanmuer发布了新的文献求助10
52秒前
fanfan完成签到 ,获得积分10
55秒前
58秒前
格纹完成签到,获得积分10
1分钟前
1分钟前
dongsanmuer完成签到,获得积分10
1分钟前
666完成签到,获得积分10
1分钟前
木子林夕完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779313
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220135
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503