Understanding Electrochemical and Mechanical Durability of Bipolar Membranes Used in Electrodialysis

电渗析 材料科学 反向电渗析 耐久性 化学工程 工艺工程 化学 复合材料 工程类 生物化学
作者
Allison M. Crow,Todd G. Deutsch,Wilson A. Smith
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (38): 2278-2278
标识
DOI:10.1149/ma2024-01382278mtgabs
摘要

Using renewable energy to drive direct carbon capture systems is a powerful way to contribute to net negative emissions. When using liquid alkaline sorbents for CO 2 direct air capture, it is critical to reduce the energy demand for CO 2 concentration and sorbent regeneration. Electrodialysis is an ideal candidate technology to integrate renewable energy into this process, however, to enable this ion-exchange membrane separators that can operate at high ion flux and low voltage are needed. Bipolar membranes (BPMs), that generate protons and hydroxide ions from the dissociation of water when operated in reverse bias, are the enabling component to generate acid and base in electrodialysis systems. Bipolar membrane electrodialysis (BPMED) uses a BPM to create acidifying and basifying chambers which are well suited to concentrate and release CO 2 and concentrate the remaining alkaline effluent to cycle back to the capture process. Current BPM durability, however, sufferers at high current density (ion flux) and physical scale. BPMs have several known degradation mechanisms including chemical breakdown of ion exchange polymers, loss of junction adhesion, or physical breakdown due to shearing force and pressure swings in an electrodialysis cell. To assess the electrochemical and mechanical durability of BPMs under operational conditions, we investigated how fabrication conditions (including preconditioning, hot pressing, and catalyst loading) impact the adhesion of custom made BPMs. T-peel studies were performed ex-situ to quantify adhesive forces of BPMs made of different compositions and prepared under different conditions, and BPMED experiments were performed to assess the electrochemical performance of the corresponding BPMs. The BPMED results show that, while adhesion is necessary to physically maintain the BPM junction, mechanical adhesion alone cannot overcome poor ion and water transport management at the water dissociation junction. The results of this systematic comparison indicate that in order for BPMs to operate at high current densities, high adhesion forces made during fabrication of BPMs will need to be balanced with water dissociation kinetics and ion/water transport through the individual membrane layers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万灵竹完成签到,获得积分10
1秒前
2秒前
zho应助婷婷采纳,获得10
2秒前
3秒前
万灵竹发布了新的文献求助20
4秒前
在水一方应助刘世豪采纳,获得10
5秒前
saveMA发布了新的文献求助10
5秒前
7秒前
7秒前
科研通AI2S应助魏为维采纳,获得10
7秒前
Emma完成签到 ,获得积分10
7秒前
JamesPei应助聘聘采纳,获得10
10秒前
俭朴的身影完成签到,获得积分10
11秒前
科研通AI2S应助杨昭采纳,获得10
11秒前
12秒前
温柔觅云发布了新的文献求助10
13秒前
Sven_M完成签到,获得积分10
13秒前
xzy998应助合适的话三个火采纳,获得10
13秒前
14秒前
14秒前
秋尽应助Luanyb采纳,获得10
15秒前
saveMA完成签到,获得积分10
16秒前
George完成签到,获得积分10
17秒前
yysh1950发布了新的文献求助10
19秒前
Owen应助diadia采纳,获得10
19秒前
学术学习发布了新的文献求助10
20秒前
qing完成签到 ,获得积分10
21秒前
23秒前
温柔觅云完成签到,获得积分10
25秒前
27秒前
28秒前
Xavier发布了新的文献求助10
31秒前
111发布了新的文献求助10
32秒前
diadia发布了新的文献求助10
32秒前
152完成签到 ,获得积分10
32秒前
realityjunky完成签到,获得积分10
32秒前
15完成签到 ,获得积分10
34秒前
CipherSage应助忐忑的项链采纳,获得10
36秒前
qiqi完成签到,获得积分10
37秒前
天天快乐应助长风采纳,获得10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4159877
求助须知:如何正确求助?哪些是违规求助? 3695738
关于积分的说明 11671059
捐赠科研通 3387540
什么是DOI,文献DOI怎么找? 1857595
邀请新用户注册赠送积分活动 918573
科研通“疑难数据库(出版商)”最低求助积分说明 831593