已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global Sensitivity Analysis via Optimal Transport

灵敏度(控制系统) 计算机科学 工程类 电子工程
作者
Emanuele Borgonovo,Alessio Figalli,Elmar Plischke,Giuseppe Savaré
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:7
标识
DOI:10.1287/mnsc.2023.01796
摘要

We examine the construction of variable importance measures for multivariate responses using the theory of optimal transport. We start with the classical optimal transport formulation. We show that the resulting sensitivity indices are well-defined under input dependence, are equal to zero under statistical independence, and are maximal under fully functional dependence. Also, they satisfy a continuity property for information refinements. We show that the new indices encompass Wagner’s variance-based sensitivity measures. Moreover, they provide deeper insights into the effect of an input’s uncertainty, quantifying its impact on the output mean, variance, and higher-order moments. We then consider the entropic formulation of the optimal transport problem and show that the resulting global sensitivity measures satisfy the same properties, with the exception that, under statistical independence, they are minimal, but not necessarily equal to zero. We prove the consistency of a given-data estimation strategy and test the feasibility of algorithmic implementations based on alternative optimal transport solvers. Application to the assemble-to-order simulator reveals a significant difference in the key drivers of uncertainty between the case in which the quantity of interest is profit (univariate) or inventory (multivariate). The new importance measures contribute to meeting the increasing demand for methods that make black-box models more transparent to analysts and decision makers. This paper was accepted by Baris Ata, stochastic models and simulation. Funding: A. Figalli acknowledges the support of the ERC [Grant 721675] “Regularity and Stability in Partial Differential Equations (RSPDE)” and of the Lagrange Mathematics and Computation Research Center. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01796 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
领导范儿应助司阔林采纳,获得10
1秒前
1秒前
1秒前
小曾发布了新的文献求助10
2秒前
2秒前
2秒前
威威完成签到 ,获得积分10
3秒前
bkagyin应助许多知识采纳,获得10
4秒前
临河盗龙完成签到,获得积分10
5秒前
天天快乐应助Hilda007采纳,获得10
5秒前
平淡凡柔发布了新的文献求助10
7秒前
7秒前
7秒前
Ning发布了新的文献求助10
7秒前
俏皮冷玉完成签到,获得积分10
9秒前
9秒前
璟晔发布了新的文献求助30
12秒前
Lionnn完成签到 ,获得积分10
12秒前
12秒前
chen完成签到,获得积分10
13秒前
15秒前
16秒前
zzzzzzzz完成签到,获得积分10
17秒前
俏皮冷玉发布了新的文献求助10
17秒前
司阔林发布了新的文献求助10
19秒前
无花果应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Momomo应助科研通管家采纳,获得50
20秒前
ding应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
21秒前
ding应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
TGM_Hedwig发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493139
求助须知:如何正确求助?哪些是违规求助? 4591135
关于积分的说明 14433416
捐赠科研通 4523765
什么是DOI,文献DOI怎么找? 2478466
邀请新用户注册赠送积分活动 1463482
关于科研通互助平台的介绍 1436175