Lightweight Ship Detection Network for SAR Range-Compressed Domain

计算机科学 压缩传感 合成孔径雷达 航程(航空) 遥感 人工智能 实时计算 计算机视觉 地质学 工程类 航空航天工程
作者
Xiangdong Tan,Xiangguang Leng,Zhongzhen Sun,Ru Luo,Kefeng Ji,Gangyao Kuang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (17): 3284-3284 被引量:5
标识
DOI:10.3390/rs16173284
摘要

The utilization of Synthetic Aperture Radar (SAR) for real-time ship detection proves highly advantageous in the supervision and monitoring of maritime activities. Ship detection in the range-compressed domain of SAR rather than in fully focused SAR imagery can significantly reduce the time and computational resources required for complete SAR imaging, enabling lightweight real-time ship detection methods to be implemented on an airborne or spaceborne SAR platform. However, there is a lack of lightweight ship detection methods specifically designed for the SAR range-compressed domain. In this paper, we propose Fast Range-Compressed Detection (FastRCDet), a novel lightweight network for ship detection in the SAR range-compressed domain. Firstly, to address the distinctive geometric characteristics of the SAR range-compressed domain, we propose a Lightweight Adaptive Network (LANet) as the backbone of the network. We introduce Arbitrary Kernel Convolution (AKConv) as a fundamental component, which enables the flexible adjustment of the receptive field shape and better adaptation to the large scale and aspect ratio characteristics of ships in the range-compressed domain. Secondly, to enhance the efficiency and simplicity of the network model further, we propose an innovative Multi-Scale Fusion Head (MSFH) module directly integrated after the backbone, eliminating the need for a neck module. This module effectively integrates features at various scales to more accurately capture detailed information about the target. Thirdly, to further enhance the network’s adaptability to ships in the range-compressed domain, we propose a novel Direction IoU (DIoU) loss function that leverages angle cost to control the convergence direction of predicted bounding boxes, thereby improving detection accuracy. Experimental results on a publicly available dataset demonstrate that FastRCDet achieves significant reductions in parameters and computational complexity compared to mainstream networks without compromising detection performance in SAR range-compressed images. FastRCDet achieves a low parameter of 2.49 M and a high detection speed of 38.02 frames per second (FPS), surpassing existing lightweight detection methods in terms of both model size and processing rate. Simultaneously, it attains an average accuracy (AP) of 77.12% in terms of its detection performance. This method provides a baseline in lightweight network design for SAR ship detection in the range-compressed domain and offers practical implications for resource-constrained embedded platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
李健应助smy采纳,获得10
5秒前
小雨完成签到 ,获得积分10
5秒前
浩二完成签到,获得积分10
5秒前
6秒前
7秒前
脑洞疼应助mumu采纳,获得10
7秒前
浩二发布了新的文献求助10
8秒前
CodeCraft应助正正采纳,获得10
8秒前
9秒前
Willa发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
缓慢的萝发布了新的文献求助10
15秒前
研友_5Y9775发布了新的文献求助10
16秒前
efls发布了新的文献求助10
16秒前
zhangjianan完成签到,获得积分20
16秒前
蛋黄啵啵发布了新的文献求助10
17秒前
18秒前
19秒前
追寻书雁完成签到 ,获得积分10
21秒前
被人踩了一脚完成签到,获得积分20
22秒前
23秒前
lin发布了新的文献求助10
23秒前
23秒前
24秒前
哈哈发布了新的文献求助10
24秒前
25秒前
蓝岳洋发布了新的文献求助10
28秒前
29秒前
hhhhhhhh发布了新的文献求助10
31秒前
自由的渗透奈鱼完成签到,获得积分10
33秒前
英俊的铭应助啦啦采纳,获得10
34秒前
bolin发布了新的文献求助10
35秒前
bkagyin应助fry采纳,获得10
36秒前
量子星尘发布了新的文献求助10
40秒前
金钱发布了新的文献求助10
40秒前
hhhhhhhh完成签到,获得积分10
41秒前
43秒前
45秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864953
求助须知:如何正确求助?哪些是违规求助? 3407362
关于积分的说明 10653959
捐赠科研通 3131420
什么是DOI,文献DOI怎么找? 1726992
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780163