Prediction of Arteriovenous Access Dysfunction by Mel Spectrogram-based Deep Learning Model

光谱图 深度学习 计算机科学 医学 人工智能 心脏病学
作者
Tung‐Ling Chung,Yi‐Hsueh Liu,Pei-Yu Wu,Jiun‐Chi Huang,Yi-Chun Tsai,Yuchen Wang,Shan-Pin Pan,Ya‐Ling Hsu,Szu‐Chia Chen
出处
期刊:International Journal of Medical Sciences [Ivyspring International Publisher]
卷期号:21 (12): 2252-2260 被引量:4
标识
DOI:10.7150/ijms.98421
摘要

Background: The early detection of arteriovenous (AV) access dysfunction is crucial for maintaining the patency of vascular access. This study aimed to use deep learning to predict AV access malfunction necessitating further vascular management. Methods: This prospective cohort study enrolled prevalent hemodialysis (HD) patients with an AV fistula or AV graft from a single HD center. Their AV access bruit sounds were recorded weekly using an electronic stethoscope from three different sites (arterial needle site, venous needle site, and the midpoint between the arterial and venous needle sites) before HD sessions. The audio signals were converted to Mel spectrograms using Fourier transformation and utilized to develop deep learning models. Three deep learning models, (1) Convolutional Neural Network (CNN), (2) Convolutional Recurrent Neural Network (CRNN), and (3) Vision Transformers-Gate Recurrent Unit (ViT-GRU), were trained and compared to predict the likelihood of dysfunctional AV access. Results: Total 437 audio recordings were obtained from 84 patients. The CNN model outperformed the other models in the test set, with an F1 score of 0.7037 and area under the receiver operating characteristic curve (AUROC) of 0.7112. The Vit-GRU model had high performance in out-of-fold predictions, with an F1 score of 0.7131 and AUROC of 0.7745, but low generalization ability in the test set, with an F1 score of 0.5225 and AUROC of 0.5977. Conclusions: The CNN model based on Mel spectrograms could predict malfunctioning AV access requiring vascular intervention within 10 days. This approach could serve as a useful screening tool for high-risk AV access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
虚心的砖家关注了科研通微信公众号
3秒前
3秒前
笑笑真美完成签到,获得积分20
4秒前
英姑应助赵卫星采纳,获得10
5秒前
5秒前
陈家小乖完成签到,获得积分10
5秒前
大方的蓝完成签到 ,获得积分10
5秒前
6秒前
情怀应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
yu发布了新的文献求助10
10秒前
10秒前
所所应助chemcarbon采纳,获得10
10秒前
科研通AI2S应助WN采纳,获得10
11秒前
Ally发布了新的文献求助30
11秒前
李j1发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助AMD采纳,获得10
13秒前
sys549发布了新的文献求助10
14秒前
17秒前
18秒前
19秒前
Arlen完成签到,获得积分10
20秒前
加油女王完成签到 ,获得积分10
21秒前
123发布了新的文献求助10
21秒前
缪甲烷完成签到,获得积分10
21秒前
wk完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113