清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Winter Wheat Mapping Method Based on Pseudo-Labels and U-Net Model for Training Sample Shortage

计算机科学 样品(材料) 分割 随机森林 人工智能 经济短缺 集合(抽象数据类型) 模式识别(心理学) 数据挖掘 遥感 地理 语言学 化学 哲学 色谱法 政府(语言学) 程序设计语言
作者
Jianhua Zhang,Shucheng You,Aixia Liu,Lijian Xie,Chenhao Huang,Han Xu,Penghan Li,Yixuan Wu,Jinsong Deng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (14): 2553-2553 被引量:6
标识
DOI:10.3390/rs16142553
摘要

In recent years, the semantic segmentation model has been widely applied in fields such as the extraction of crops due to its advantages such as strong discrimination ability, high accuracy, etc. Currently, there is no standard set of ground true label data for major crops in China, and the visual interpretation process is usually time-consuming and laborious. The sample size also makes it difficult to support the model to learn enough ground features, resulting in poor generalisation ability of the model, which in turn makes the model difficult to apply in fine extraction tasks of large-area crops. In this study, a method to establish a pseudo-label sample set based on the random forest algorithm to train a semantic segmentation model (U-Net) was proposed to perform winter wheat extraction. With the help of the GEE platform, Winter Wheat Canopy Index (WCI) indicators were employed in this method to initially extract winter wheat, and training samples (i.e., pseudo labels) were built for the semantic segmentation model through the iterative process of “generating random sample points—random forest model training—winter wheat extraction”; on this basis, the U-net model was trained with multi-time series remote sensing images; finally, the U-Net model was employed to obtain the spatial distribution map of winter wheat in Henan Province in 2022. The results illustrated that: (1) Pseudo-label data were constructed using the random forest model in typical regions, achieving an overall accuracy of 97.53% under validation with manual samples, proving that its accuracy meets the requirements for U-Net model training. (2) Utilizing the U-Net model, U-Net++ model, and random forest model constructed based on pseudo-label data for 2022, winter wheat mapping was conducted in Henan Province. The extraction accuracy of the three models is in the order of U-Net model > U-Net++ model > random forest model. (3) Using the U-Net model to predict the winter wheat planting areas in Henan Province in 2019, although the extraction accuracy decreased compared to 2022, it still exceeded that of the random forest model. Additionally, the U-Net++ model did not achieve higher classification accuracy. (4) Experimental results demonstrate that deep learning models constructed based on pseudo-labels exhibit higher classification accuracy. Compared to traditional machine learning models like random forest, they have higher spatiotemporal adaptability and robustness, further validating the scientific and practical feasibility of pseudo-labels and their generation strategies, which are expected to provide a feasible technical pathway for intelligent extraction of winter wheat spatial distribution information in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海阔天空完成签到 ,获得积分10
27秒前
李演员完成签到,获得积分10
28秒前
zzhui完成签到,获得积分10
37秒前
溆玉碎兰笑完成签到 ,获得积分10
1分钟前
1分钟前
无奈的代珊完成签到 ,获得积分10
1分钟前
墨尘发布了新的文献求助30
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
皮皮完成签到 ,获得积分10
1分钟前
pcr163应助墨尘采纳,获得200
1分钟前
pcr163应助墨尘采纳,获得200
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
英姑应助533采纳,获得10
1分钟前
搜集达人应助细心的语蓉采纳,获得10
1分钟前
阳炎完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助Bin_Liu采纳,获得10
2分钟前
2分钟前
2分钟前
含糊的茹妖完成签到 ,获得积分0
2分钟前
颜陌完成签到,获得积分10
2分钟前
四月发布了新的文献求助10
2分钟前
2分钟前
TheLsr发布了新的文献求助10
2分钟前
yuiip完成签到 ,获得积分10
2分钟前
Perry发布了新的文献求助10
3分钟前
TheLsr完成签到,获得积分10
3分钟前
song完成签到 ,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
3分钟前
asdwind完成签到,获得积分10
3分钟前
泥泞完成签到 ,获得积分10
3分钟前
4分钟前
zhangsan完成签到,获得积分10
4分钟前
4分钟前
Bin_Liu发布了新的文献求助10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
4分钟前
533发布了新的文献求助10
4分钟前
5分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360260
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076