Winter Wheat Mapping Method Based on Pseudo-Labels and U-Net Model for Training Sample Shortage

计算机科学 样品(材料) 分割 随机森林 人工智能 经济短缺 集合(抽象数据类型) 模式识别(心理学) 数据挖掘 遥感 地理 语言学 化学 哲学 色谱法 政府(语言学) 程序设计语言
作者
Jianhua Zhang,Shucheng You,Aixia Liu,Lijian Xie,Chenhao Huang,Han Xu,Penghan Li,Yixuan Wu,Jinsong Deng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (14): 2553-2553 被引量:6
标识
DOI:10.3390/rs16142553
摘要

In recent years, the semantic segmentation model has been widely applied in fields such as the extraction of crops due to its advantages such as strong discrimination ability, high accuracy, etc. Currently, there is no standard set of ground true label data for major crops in China, and the visual interpretation process is usually time-consuming and laborious. The sample size also makes it difficult to support the model to learn enough ground features, resulting in poor generalisation ability of the model, which in turn makes the model difficult to apply in fine extraction tasks of large-area crops. In this study, a method to establish a pseudo-label sample set based on the random forest algorithm to train a semantic segmentation model (U-Net) was proposed to perform winter wheat extraction. With the help of the GEE platform, Winter Wheat Canopy Index (WCI) indicators were employed in this method to initially extract winter wheat, and training samples (i.e., pseudo labels) were built for the semantic segmentation model through the iterative process of “generating random sample points—random forest model training—winter wheat extraction”; on this basis, the U-net model was trained with multi-time series remote sensing images; finally, the U-Net model was employed to obtain the spatial distribution map of winter wheat in Henan Province in 2022. The results illustrated that: (1) Pseudo-label data were constructed using the random forest model in typical regions, achieving an overall accuracy of 97.53% under validation with manual samples, proving that its accuracy meets the requirements for U-Net model training. (2) Utilizing the U-Net model, U-Net++ model, and random forest model constructed based on pseudo-label data for 2022, winter wheat mapping was conducted in Henan Province. The extraction accuracy of the three models is in the order of U-Net model > U-Net++ model > random forest model. (3) Using the U-Net model to predict the winter wheat planting areas in Henan Province in 2019, although the extraction accuracy decreased compared to 2022, it still exceeded that of the random forest model. Additionally, the U-Net++ model did not achieve higher classification accuracy. (4) Experimental results demonstrate that deep learning models constructed based on pseudo-labels exhibit higher classification accuracy. Compared to traditional machine learning models like random forest, they have higher spatiotemporal adaptability and robustness, further validating the scientific and practical feasibility of pseudo-labels and their generation strategies, which are expected to provide a feasible technical pathway for intelligent extraction of winter wheat spatial distribution information in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LiXingchen发布了新的文献求助10
1秒前
2秒前
英姑应助和谐的敏采纳,获得10
4秒前
佳jia发布了新的文献求助10
4秒前
杨杰发布了新的文献求助10
5秒前
6秒前
碧蓝青梦发布了新的文献求助10
6秒前
扬帆完成签到,获得积分10
7秒前
tj完成签到,获得积分10
8秒前
vicky完成签到 ,获得积分10
8秒前
8秒前
MJ发布了新的文献求助10
9秒前
bai完成签到,获得积分10
9秒前
10秒前
英勇的笑南完成签到,获得积分10
10秒前
11秒前
win应助TOM采纳,获得10
11秒前
11秒前
外星汽水发布了新的文献求助10
12秒前
Waeiyengyul发布了新的文献求助30
12秒前
远航发布了新的文献求助10
13秒前
orixero应助碧蓝青梦采纳,获得10
13秒前
果称发布了新的文献求助10
13秒前
ai万完成签到,获得积分10
13秒前
13秒前
luyuran完成签到,获得积分10
13秒前
14秒前
tt发布了新的文献求助10
15秒前
16秒前
思源应助愉快的花卷采纳,获得10
16秒前
哞哞发布了新的文献求助10
16秒前
ddx发布了新的文献求助10
18秒前
Cloud完成签到,获得积分10
19秒前
远航完成签到,获得积分10
19秒前
xiaoshulin完成签到,获得积分10
20秒前
鲤鱼寻菡发布了新的文献求助10
21秒前
ding应助nenoaowu采纳,获得10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739511
求助须知:如何正确求助?哪些是违规求助? 4090781
关于积分的说明 12654315
捐赠科研通 3800254
什么是DOI,文献DOI怎么找? 2098532
邀请新用户注册赠送积分活动 1123945
科研通“疑难数据库(出版商)”最低求助积分说明 999214