Two-Level Scheduling Algorithms for Deep Neural Network Inference in Vehicular Networks

计算机科学 调度(生产过程) 能源消耗 推论 算法 火车 实时计算 人工智能 数学优化 工程类 数学 电气工程 地图学 地理
作者
Yalan Wu,Jigang Wu,Mianyang Yao,Bosheng Liu,Long Chen,Siew-Kei Lam
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9324-9343
标识
DOI:10.1109/tits.2023.3266795
摘要

In vehicular networks, task scheduling at the microarchitecture-level and network-level offers tremendous potential to improve the quality of computing services for deep neural network (DNN) inference. However, existing task scheduling works only focus on either one of the two levels, which results in inefficient utilization of computing resources. This paper aims to fill this gap by formulating a two-level scheduling problem for DNN inference tasks in a vehicular network, with an objective of minimizing total weighted sum of response time and energy consumption for all tasks under the following constraints: per task response time, per vehicle energy consumption, per vehicle storage capacity. We first formulate the problem and prove that it is NP-hard. A group transformation based algorithm, called GTA, is proposed. GTA makes scheduling decisions at the network-level using the group transformation based approach, and at the microarchitecture-level using a greedy strategy. In addition, an algorithm, denoted as DRL, is proposed to decrease total weighted sum of response time and energy consumption for all tasks. DRL trains two models with deep reinforcement learning to achieve two-level scheduling. The proposed algorithms are evaluated on a platform consisting of a desktop, Raspberry Pi, Eyeriss, OSM, SUMO, NS-3. Simulation results show that DRL outperforms the state-of-the-art methods for all cases, while the proposed GTA outperforms the state-of-the-art methods for most cases, in terms of total weighted sum of response time and energy consumption. Compared with four baseline algorithms, GTA and DRL reduce the total weighted sum of response time and energy consumption by 41.49% and 62.38%, on average respectively, for different numbers of tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHANGJIAN完成签到 ,获得积分10
1秒前
情怀应助开朗发卡采纳,获得10
1秒前
研友_8QxN1Z完成签到,获得积分10
2秒前
橘子树完成签到 ,获得积分10
2秒前
2秒前
糖豆子完成签到,获得积分10
2秒前
3秒前
小桃子完成签到,获得积分10
3秒前
zulpikar完成签到 ,获得积分10
3秒前
滴滴滴发布了新的文献求助30
4秒前
林布林发布了新的文献求助10
5秒前
淡淡乐巧完成签到 ,获得积分10
5秒前
万能图书馆应助lanjiu采纳,获得10
6秒前
我是老大应助SUE采纳,获得10
7秒前
练得身形似鹤形完成签到 ,获得积分10
7秒前
Mayinhere完成签到,获得积分10
7秒前
7秒前
7秒前
猪猪hero应助zero_sky采纳,获得10
8秒前
8秒前
专注念芹完成签到 ,获得积分20
9秒前
10秒前
DrLee完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
14秒前
开朗发卡发布了新的文献求助10
15秒前
可罗雀完成签到,获得积分10
15秒前
16秒前
16秒前
炙热的谷雪完成签到,获得积分10
21秒前
科研通AI5应助17采纳,获得10
21秒前
21秒前
阿航完成签到,获得积分10
22秒前
善学以致用应助TT2022采纳,获得10
22秒前
阿琪发布了新的文献求助10
22秒前
陈龙平发布了新的文献求助100
23秒前
asdfg应助lxlcx采纳,获得10
24秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386