Spectral Classification of Large-Scale Blended (Micro)Plastics Using FT-IR Raw Spectra and Image-Based Machine Learning

卷积神经网络 随机森林 人工智能 模式识别(心理学) 计算机科学 比例(比率) 光谱特征 鉴定(生物学) 高光谱成像 决策树 遥感 多光谱图像 物理 植物 量子力学 生物 地质学
作者
Yanlong Liu,Wenli Yao,Fenghui Qin,Lei Zhou,Yian Zheng
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (16): 6656-6663 被引量:18
标识
DOI:10.1021/acs.est.2c08952
摘要

Microplastics (MPs) are currently recognized as emerging pollutants; their identification and classification are therefore essential during their monitoring and management. In contrast to most studies based on small datasets and library searches, this study developed and compared four machine learning-based classifiers and two large-scale blended plastic datasets, where a 1D convolutional neural network (CNN), decision tree, and random forest (RF) were fed with raw spectral data from Fourier transform infrared spectroscopy, while a 2D CNN used the corresponding spectral images as the input. With an overall accuracy of 96.43% on a small dataset and 97.44% on a large dataset, the 1D CNN outperformed other models. The 1D CNN was the best at predicting environment samples, while the RF was the most robust with less spectral data. Overall, RF and 2D CNNs might be evaluated for plastic identification with fewer spectral data; however, 1D CNNs were thought to be the most effective with sufficient spectral data. Accordingly, an open-source MP spectroscopic analysis tool was developed to facilitate a quick and accurate analysis of existing MP samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
花开不败完成签到,获得积分10
2秒前
3秒前
BoBo完成签到 ,获得积分10
4秒前
Beyond完成签到 ,获得积分10
5秒前
包子凯越完成签到,获得积分10
6秒前
ZHH完成签到,获得积分10
11秒前
16秒前
完美的皮卡丘完成签到 ,获得积分10
16秒前
月亮弯弯啊完成签到,获得积分20
17秒前
21秒前
22秒前
23秒前
jiayou彭发布了新的文献求助10
26秒前
充电宝应助花卷采纳,获得10
29秒前
hw发布了新的文献求助10
30秒前
33秒前
33秒前
定西完成签到,获得积分10
36秒前
hw完成签到,获得积分10
37秒前
YOY发布了新的文献求助10
37秒前
隐形曼青应助loen采纳,获得10
37秒前
37秒前
Ws完成签到,获得积分10
38秒前
共享精神应助韩凡采纳,获得10
39秒前
39秒前
之间完成签到,获得积分10
39秒前
黄石发布了新的文献求助10
40秒前
多情的忆之完成签到,获得积分10
41秒前
彰化完成签到,获得积分10
42秒前
小宋发布了新的文献求助10
43秒前
之贻发布了新的文献求助10
44秒前
45秒前
一只猪完成签到,获得积分10
47秒前
hahahahaha完成签到,获得积分10
47秒前
49秒前
韩凡发布了新的文献求助10
50秒前
50秒前
往事吴痕完成签到 ,获得积分10
52秒前
如意蚂蚁完成签到,获得积分10
56秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445