Pavement Friction Evaluation Based on Vehicle Dynamics and Vision Data Using a Multi-Feature Fusion Network

人工神经网络 路面 车辆动力学 传感器融合 特征(语言学) 计算机科学 人工智能 工程类 模式识别(心理学) 数据挖掘 汽车工程 语言学 哲学 土木工程
作者
Zhao Du,Asmus Skar,Matteo Pettinari,Xingyi Zhu
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (11): 219-236 被引量:11
标识
DOI:10.1177/03611981231165029
摘要

The tire–road friction coefficient is a critical evaluation index of the service performance of roads: it governs the stopping distance, traction control, and stability of vehicles. Moreover, friction information is also needed in many function units of modern vehicles. This paper proposes a novel data-driven approach for inference of the maximum tire–road friction coefficient using a combination of vehicle dynamics signal and machine vision data. The approach is aimed at robust road condition perception that can provide frequent measurements over large areas across all weather conditions. Two different neural network architectures were adopted to extract in-depth features behind vehicle dynamics signals and road surface images. Features from these two types of data were then fused in two different levels, namely feature level and decision level, forming a multi-feature fusion neural network. The proposed network performs better than models based only on dynamic signals or vision data. The method proposed was applied to real data obtained from an electric car in a highway driving scenario. For classification of the maximum tire–road friction coefficient, the proposed network can yield F1-score increments of 0.09 and 0.18 from dynamics-based and vision-based sub-models, respectively. For the maximum tire–road friction coefficient value regression, the proposed model also achieves the highest R-square score of 0.71. Of these two types of data collected under highway driving scenarios, the vision data contribute more to the overall performance of the proposed model. Nevertheless, the dynamics data possess excellent potential in poor lighting conditions. With these fused features, the proposed multi-feature fusion network can not only improve the accuracy of maximum tire–road friction coefficient estimation but also is deemed workable for a broader range of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ink关注了科研通微信公众号
1秒前
天顺发布了新的文献求助30
2秒前
隋同学完成签到,获得积分10
2秒前
3秒前
yi发布了新的文献求助10
3秒前
jiaojiao完成签到,获得积分10
5秒前
jin完成签到,获得积分10
6秒前
6秒前
研友_Z1xNWn发布了新的文献求助10
7秒前
我是老大应助ri_290采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
哈基米德应助科研通管家采纳,获得20
8秒前
www应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
充电宝应助Albert007采纳,获得10
10秒前
论文顺利完成签到,获得积分10
10秒前
老阎应助沙漏采纳,获得30
10秒前
科研通AI2S应助沙漏采纳,获得10
10秒前
顾矜应助沙漏采纳,获得10
10秒前
carol7298完成签到 ,获得积分10
11秒前
23应助xuxu采纳,获得10
12秒前
忆修完成签到,获得积分10
12秒前
13秒前
英俊的铭应助木沐采纳,获得10
13秒前
古芍昂完成签到 ,获得积分10
14秒前
15秒前
15秒前
高晨焜发布了新的文献求助10
16秒前
17秒前
汉堡包应助hkh采纳,获得10
18秒前
希望天下0贩的0应助hkh采纳,获得10
18秒前
JamesPei应助hkh采纳,获得10
18秒前
李健应助hkh采纳,获得10
18秒前
ji发布了新的文献求助10
19秒前
科研通AI2S应助SHIJIE采纳,获得10
20秒前
Yve发布了新的文献求助10
21秒前
21秒前
Fury完成签到 ,获得积分10
23秒前
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094067
求助须知:如何正确求助?哪些是违规求助? 3632603
关于积分的说明 11513965
捐赠科研通 3343228
什么是DOI,文献DOI怎么找? 1837538
邀请新用户注册赠送积分活动 905201
科研通“疑难数据库(出版商)”最低求助积分说明 823037