Pavement Friction Evaluation Based on Vehicle Dynamics and Vision Data Using a Multi-Feature Fusion Network

人工神经网络 路面 车辆动力学 传感器融合 特征(语言学) 计算机科学 人工智能 工程类 模式识别(心理学) 数据挖掘 汽车工程 语言学 哲学 土木工程
作者
Zhao Du,Asmus Skar,Matteo Pettinari,Xingyi Zhu
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (11): 219-236 被引量:10
标识
DOI:10.1177/03611981231165029
摘要

The tire–road friction coefficient is a critical evaluation index of the service performance of roads: it governs the stopping distance, traction control, and stability of vehicles. Moreover, friction information is also needed in many function units of modern vehicles. This paper proposes a novel data-driven approach for inference of the maximum tire–road friction coefficient using a combination of vehicle dynamics signal and machine vision data. The approach is aimed at robust road condition perception that can provide frequent measurements over large areas across all weather conditions. Two different neural network architectures were adopted to extract in-depth features behind vehicle dynamics signals and road surface images. Features from these two types of data were then fused in two different levels, namely feature level and decision level, forming a multi-feature fusion neural network. The proposed network performs better than models based only on dynamic signals or vision data. The method proposed was applied to real data obtained from an electric car in a highway driving scenario. For classification of the maximum tire–road friction coefficient, the proposed network can yield F1-score increments of 0.09 and 0.18 from dynamics-based and vision-based sub-models, respectively. For the maximum tire–road friction coefficient value regression, the proposed model also achieves the highest R-square score of 0.71. Of these two types of data collected under highway driving scenarios, the vision data contribute more to the overall performance of the proposed model. Nevertheless, the dynamics data possess excellent potential in poor lighting conditions. With these fused features, the proposed multi-feature fusion network can not only improve the accuracy of maximum tire–road friction coefficient estimation but also is deemed workable for a broader range of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xxddw发布了新的文献求助10
4秒前
5秒前
老阳发布了新的文献求助10
7秒前
7秒前
大鼻子的新四岁完成签到,获得积分10
9秒前
白冰发布了新的文献求助10
12秒前
怕孤单的觅波完成签到 ,获得积分20
13秒前
26秒前
打工人不酷完成签到 ,获得积分10
28秒前
30秒前
左孤容完成签到 ,获得积分10
31秒前
网友的科研日常完成签到,获得积分10
31秒前
大力美少女完成签到,获得积分10
33秒前
36秒前
科目三应助沉静的曼荷采纳,获得10
37秒前
超帅斑马发布了新的文献求助50
41秒前
42秒前
英雷完成签到,获得积分10
43秒前
45秒前
zer0完成签到,获得积分10
45秒前
49秒前
MchemG应助科研通管家采纳,获得10
50秒前
共享精神应助科研通管家采纳,获得10
50秒前
CodeCraft应助科研通管家采纳,获得10
50秒前
慕青应助科研通管家采纳,获得10
50秒前
共享精神应助科研通管家采纳,获得10
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
852应助科研通管家采纳,获得10
50秒前
完美世界应助科研通管家采纳,获得10
50秒前
我是老大应助科研通管家采纳,获得10
50秒前
天天快乐应助科研通管家采纳,获得10
50秒前
小蘑菇应助科研通管家采纳,获得10
50秒前
50秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
51秒前
科研通AI5应助aka毕业顺利采纳,获得10
51秒前
了凡完成签到 ,获得积分10
51秒前
ggg发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322546
关于积分的说明 10210579
捐赠科研通 3037903
什么是DOI,文献DOI怎么找? 1666952
邀请新用户注册赠送积分活动 797871
科研通“疑难数据库(出版商)”最低求助积分说明 758059