亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pavement Friction Evaluation Based on Vehicle Dynamics and Vision Data Using a Multi-Feature Fusion Network

人工神经网络 路面 车辆动力学 传感器融合 特征(语言学) 计算机科学 机器视觉 人工智能 工程类 模式识别(心理学) 数据挖掘 计算机视觉 汽车工程 语言学 哲学 土木工程
作者
Zhao Du,Asmus Skar,Matteo Pettinari,Xingyi Zhu
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (11): 219-236 被引量:16
标识
DOI:10.1177/03611981231165029
摘要

The tire–road friction coefficient is a critical evaluation index of the service performance of roads: it governs the stopping distance, traction control, and stability of vehicles. Moreover, friction information is also needed in many function units of modern vehicles. This paper proposes a novel data-driven approach for inference of the maximum tire–road friction coefficient using a combination of vehicle dynamics signal and machine vision data. The approach is aimed at robust road condition perception that can provide frequent measurements over large areas across all weather conditions. Two different neural network architectures were adopted to extract in-depth features behind vehicle dynamics signals and road surface images. Features from these two types of data were then fused in two different levels, namely feature level and decision level, forming a multi-feature fusion neural network. The proposed network performs better than models based only on dynamic signals or vision data. The method proposed was applied to real data obtained from an electric car in a highway driving scenario. For classification of the maximum tire–road friction coefficient, the proposed network can yield F1-score increments of 0.09 and 0.18 from dynamics-based and vision-based sub-models, respectively. For the maximum tire–road friction coefficient value regression, the proposed model also achieves the highest R-square score of 0.71. Of these two types of data collected under highway driving scenarios, the vision data contribute more to the overall performance of the proposed model. Nevertheless, the dynamics data possess excellent potential in poor lighting conditions. With these fused features, the proposed multi-feature fusion network can not only improve the accuracy of maximum tire–road friction coefficient estimation but also is deemed workable for a broader range of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Chloe发布了新的文献求助10
3秒前
LL完成签到 ,获得积分10
9秒前
bkagyin应助灵巧柚子采纳,获得10
14秒前
香蕉觅云应助dana采纳,获得10
15秒前
小马甲应助Chloe采纳,获得10
16秒前
25秒前
灵巧柚子完成签到,获得积分20
26秒前
灵巧柚子发布了新的文献求助10
30秒前
45秒前
51秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
万能图书馆应助HWX采纳,获得10
1分钟前
BowieHuang应助oleskarabach采纳,获得10
1分钟前
BowieHuang应助oleskarabach采纳,获得10
1分钟前
陈文学完成签到,获得积分10
1分钟前
nihao完成签到 ,获得积分10
1分钟前
dwbh完成签到,获得积分10
1分钟前
1分钟前
无奈的平凡应助Li采纳,获得10
2分钟前
蓝色的鱼发布了新的文献求助10
2分钟前
开心乐天关注了科研通微信公众号
2分钟前
2分钟前
开心乐天发布了新的文献求助10
2分钟前
lijunliang完成签到,获得积分10
2分钟前
xky200125完成签到 ,获得积分10
2分钟前
夏夏完成签到,获得积分20
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522665
求助须知:如何正确求助?哪些是违规求助? 4613555
关于积分的说明 14539047
捐赠科研通 4551300
什么是DOI,文献DOI怎么找? 2494137
邀请新用户注册赠送积分活动 1475114
关于科研通互助平台的介绍 1446498