Design of material regulatory mechanism for electrocatalytic converting NO/NO3− to NH3 progress

杂原子 材料科学 电化学 纳米技术 化学 物理化学 有机化学 电极 戒指(化学)
作者
Guolong Lu,Sanshuang Gao,Qian Liu,Shusheng Zhang,Jun Luo,Xijun Liu
出处
期刊:Natural sciences [Wiley]
卷期号:3 (3) 被引量:12
标识
DOI:10.1002/ntls.20220047
摘要

Abstract Nitric oxide (NO)/nitrate (NO 3 − ) exists as the most hazardous pollutions in the air/water that severely impacts human health. Conventional disposing methods are energy‐consuming and uneconomic. Moreover, ammonia (NH 3 ) fertilizer resources acquire urgent, eco‐friendly, and economical strategies that can remove NO/NO 3 − pollution and simultaneously convert nitrate species, maintaining nitrogen balance. Electrochemical nitrogen (N) reduction is attracting more attention, particularly electrocatalytic NO/NO 3 − reduction (ENR) to ammonia supply an approach to fixed nitrogen and generate ammonia. ENR is capable of achieving high NH 3 yield and Faradaic efficiency (FE), avoiding competitive hydrogen evolution reactions and easily overcoming strong N≡N triple bond (941 kJ mol −1 ). There are abundant research studies related to ENR for decreasing hazardous NO/NO 3 − and supplying profitable NH 3 . In this review, we discuss different electrocatalytic regulations for crystalline facet engineering, heteroatom doping, heterostructure, surface vacancy engineering, and single‐atom structure, which bring various metal/nonmetal and their combined catalysts to the preferable performance, such as reactivity, selectivity, FE, and stability. Finally, we summarize the challenges and provide the perspectives to promote the industrial application of ENR. Key Points This review focusing on systematically introduce the different modification strategies and regulatory mechanism to enhance the electrochemical performance for NORR/NO 3 RR, including crystalline facet engineering, heteroatom doping, heterostructure, surface vacancy engineering, and single atom structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得20
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
xxxx完成签到,获得积分10
4秒前
木棉完成签到,获得积分10
6秒前
美女完成签到,获得积分10
12秒前
昔昔完成签到 ,获得积分10
18秒前
嗝嗝完成签到,获得积分10
18秒前
跋扈完成签到,获得积分10
19秒前
昵称什么的不重要啦完成签到 ,获得积分10
20秒前
captainHc发布了新的文献求助10
23秒前
越幸运完成签到 ,获得积分10
25秒前
时尚雨兰完成签到,获得积分10
27秒前
John完成签到 ,获得积分10
28秒前
31秒前
Akinmide完成签到 ,获得积分10
32秒前
33秒前
33秒前
captainHc完成签到,获得积分10
34秒前
满意外套完成签到 ,获得积分10
35秒前
欧皇发布了新的文献求助10
36秒前
进退须臾完成签到,获得积分10
37秒前
38秒前
小岚花完成签到 ,获得积分10
39秒前
43秒前
欧皇发布了新的文献求助10
46秒前
51秒前
54秒前
tianxiong完成签到 ,获得积分10
56秒前
欧皇完成签到,获得积分20
57秒前
lucky珠完成签到 ,获得积分10
57秒前
xiaojingbao发布了新的文献求助10
58秒前
个性惜蕊完成签到,获得积分10
59秒前
欧皇发布了新的文献求助30
59秒前
1分钟前
xcwy完成签到,获得积分10
1分钟前
Pauline完成签到 ,获得积分10
1分钟前
yin完成签到,获得积分10
1分钟前
李木头完成签到,获得积分10
1分钟前
xiha西希完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318553
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679759
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353