亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy

材料科学 放电等离子烧结 热电效应 塞贝克系数 热导率 声子散射 带隙 热电材料 载流子散射 无定形固体 陶瓷 功勋 兴奋剂 电阻率和电导率 光电子学 电子迁移率 复合材料 电气工程 物理 工程类 有机化学 化学 热力学
作者
Dianzhen Wang,Yuqi Gao,Cun You,Jiaen Cheng,Zeben Liu,Yuhan Qiang,Min Lian,Xiaoci Ma,Yufei Ge,Yanli Chen,Qiang Tao,Pinwen Zhu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (2) 被引量:10
标识
DOI:10.1002/adfm.202308970
摘要

Abstract ZnO is a promising high‐temperature thermoelectric (TE) material due to its superior stability and earth abundance. However, the coupling relation between Seebeck coefficient and electrical conductivity on carrier concentration limits the optimum TE performance for most TE materials, especially ZnO. Herein, enhancement of TE performance is achieved via a stepwise optimization strategy composed of carrier concentration optimization and carrier filtering effect for fabricating robust ZnO‐based composite ceramics through a self‐developed specific high‐pressure synthesis followed by spark plasma sintering. Specifically, doping SnO 2 provide substantial electrons to surge the carrier concentration. The subsequent compositing Si 3 N 4 nanoparticles results in the unique reaction‐generated Zn 2 SiO 4 nanoprecipitates with a larger bandgap and intrinsically low thermal conductivity, which introduce an excellent carrier filtering effect to increase the Seebeck coefficient by 57.7% at 300 K without compromising electrical conductivity much and enhance phonon scattering to cause an ultralow lattice thermal conductivity of 1.39 W m −1 K −1 achieving amorphous limits of ZnO (1.4±0.1 W m −1 K −1 ). Consequently, a high peak ZT (figure of merit) of 0.691 at 873 K is obtained, which is higher than that of previously reported ZnO‐based TE materials. This work demonstrates a feasible and effective strategy to fabricate high‐performance TE materials, especially those with inferior electrical conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
拾野完成签到 ,获得积分10
13秒前
14秒前
田様应助嘿嘿采纳,获得20
28秒前
39秒前
嘟嘟发布了新的文献求助10
42秒前
42秒前
nnnick完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助嘟嘟采纳,获得10
2分钟前
Ava应助陆驳采纳,获得10
2分钟前
2分钟前
2分钟前
嘟嘟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
隐形曼青应助小鱼干采纳,获得10
2分钟前
烂漫的易蓉完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
小鱼干发布了新的文献求助10
3分钟前
gnidam发布了新的文献求助100
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
大模型应助Luo采纳,获得30
4分钟前
dx完成签到,获得积分10
4分钟前
debu9完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053857
求助须知:如何正确求助?哪些是违规求助? 3591938
关于积分的说明 11413712
捐赠科研通 3318257
什么是DOI,文献DOI怎么找? 1824950
邀请新用户注册赠送积分活动 896270
科研通“疑难数据库(出版商)”最低求助积分说明 817418