Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography

医学 队列 无线电技术 接收机工作特性 置信区间 逻辑回归 曲线下面积 放射科 核医学 内科学
作者
Guanchao Ye,Guangyao Wu,Kuo Li,Chi Zhang,Yuzhou Zhuang,Hong Liu,Enmin Song,Yu Qi,Yiying Li,Fan Yang,Yongde Liao
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (4): 1686-1697 被引量:12
标识
DOI:10.1016/j.acra.2023.08.040
摘要

Rationale and Objectives To accurately identify the high-risk pathological factors of pulmonary nodules, our study constructed a model combined with clinical features, radiomics features, and deep transfer learning features to predict high-risk pathological pulmonary nodules. Materials and Methods The study cohort consisted of 469 cases of lung adenocarcinoma patients, divided into a training cohort (n = 400) and an external validation cohort (n = 69). We obtained computed tomography (CT) semantic features and clinical characteristics, as well as extracted radiomics and deep transfer learning (DTL) features from the CT images. Selected features were used for constructing prediction models using the logistic regression (LR) algorithm. The performance of the models was evaluated through metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. Results The clinical model achieved an AUC of 0.774 (95% CI: 0.728–0.821) in the training cohort and 0.762 (95% confidence interval [CI]: 0.650–0.873) in the external validation cohort. The radiomics model demonstrated an AUC of 0.847 (95% CI: 0.810–0.884) in the training cohort and 0.800 (95% CI: 0.693–0.907) in the external validation cohort. The radiomics-DTL (Rad-DTL) model showed an AUC of 0.871 (95% CI: 0.838–0.905) in the training cohort and 0.806 (95% CI: 0.698–0.914) in the external validation cohort. The proposed combined model yielded AUC values of 0.872 and 0.814 in the training and external validation cohorts, respectively. The combined model demonstrated superiority over both the clinical model and the Rad-DTL model. There were no statistically significant differences observed in the comparison between the combined model incorporating clinical features and the Rad-DTL model. Decision curve analysis (DCA) indicated that the models provided a net benefit in predicting high-risk pathologic pulmonary nodules. Conclusion Rad-DTL signature is a potential biomarker for predicting high-risk pathologic pulmonary nodules using preoperative CT, determining the appropriate surgical strategy, and guiding the extent of resection. To accurately identify the high-risk pathological factors of pulmonary nodules, our study constructed a model combined with clinical features, radiomics features, and deep transfer learning features to predict high-risk pathological pulmonary nodules. The study cohort consisted of 469 cases of lung adenocarcinoma patients, divided into a training cohort (n = 400) and an external validation cohort (n = 69). We obtained computed tomography (CT) semantic features and clinical characteristics, as well as extracted radiomics and deep transfer learning (DTL) features from the CT images. Selected features were used for constructing prediction models using the logistic regression (LR) algorithm. The performance of the models was evaluated through metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The clinical model achieved an AUC of 0.774 (95% CI: 0.728–0.821) in the training cohort and 0.762 (95% confidence interval [CI]: 0.650–0.873) in the external validation cohort. The radiomics model demonstrated an AUC of 0.847 (95% CI: 0.810–0.884) in the training cohort and 0.800 (95% CI: 0.693–0.907) in the external validation cohort. The radiomics-DTL (Rad-DTL) model showed an AUC of 0.871 (95% CI: 0.838–0.905) in the training cohort and 0.806 (95% CI: 0.698–0.914) in the external validation cohort. The proposed combined model yielded AUC values of 0.872 and 0.814 in the training and external validation cohorts, respectively. The combined model demonstrated superiority over both the clinical model and the Rad-DTL model. There were no statistically significant differences observed in the comparison between the combined model incorporating clinical features and the Rad-DTL model. Decision curve analysis (DCA) indicated that the models provided a net benefit in predicting high-risk pathologic pulmonary nodules. Rad-DTL signature is a potential biomarker for predicting high-risk pathologic pulmonary nodules using preoperative CT, determining the appropriate surgical strategy, and guiding the extent of resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北风那个崔完成签到 ,获得积分10
1秒前
科研通AI6应助七七七呀采纳,获得10
2秒前
我再也不闹着去叔叔阿姨家吃饭了完成签到 ,获得积分10
2秒前
ZsJJkk发布了新的文献求助10
2秒前
开心谷秋完成签到,获得积分10
2秒前
Jasper应助空写乐采纳,获得30
2秒前
2秒前
4秒前
wzq发布了新的文献求助10
5秒前
Hello应助段冰旋采纳,获得30
5秒前
张瑞宁完成签到,获得积分10
6秒前
oyx53完成签到,获得积分10
7秒前
烟花应助简单的夜绿采纳,获得10
7秒前
英勇的飞扬发布了新的文献求助200
9秒前
今后应助冷雨采纳,获得10
12秒前
changyongcheng完成签到 ,获得积分10
12秒前
曾丹么么哒完成签到,获得积分10
12秒前
香蕉觅云应助玄音采纳,获得10
13秒前
整齐的寒梦完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
15秒前
17秒前
18秒前
18秒前
18秒前
阿龙啊完成签到 ,获得积分10
19秒前
ZBW发布了新的文献求助10
19秒前
19秒前
19秒前
ZsJJkk完成签到,获得积分20
20秒前
健壮念寒发布了新的文献求助10
20秒前
21秒前
xzy发布了新的文献求助10
21秒前
何燕姿完成签到,获得积分10
21秒前
22秒前
Shell完成签到,获得积分10
22秒前
wwww完成签到,获得积分10
22秒前
suz发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920759
求助须知:如何正确求助?哪些是违规求助? 4192213
关于积分的说明 13020734
捐赠科研通 3963275
什么是DOI,文献DOI怎么找? 2172390
邀请新用户注册赠送积分活动 1190265
关于科研通互助平台的介绍 1099203