Reciprocal Human-Machine Learning: A Theory and an Instantiation for the Case of Message Classification

计算机科学 人工智能 背景(考古学) 机器学习 互惠的 领域(数学分析) 古生物学 数学分析 哲学 语言学 数学 生物
作者
Dov Te’eni,Inbal Yahav,Alexely Zagalsky,David G. Schwartz,Gahl Silverman,Daniel Cohen,Yossi Mann,Dafna Lewinsky
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:14
标识
DOI:10.1287/mnsc.2022.03518
摘要

There is growing agreement among researchers and developers that in certain machine-learning (ML) tasks, it may be advantageous to keep a “human in the loop” rather than rely on fully autonomous systems. Continual human involvement can mitigate machine bias and performance deterioration while enabling humans to continue learning from insights derived by ML. Yet a microlevel theory that effectively facilitates joint and continual learning in both humans and machines is still lacking. To address this need, we adopt a design science approach and build on theories of human reciprocal learning to develop an abstract configuration for reciprocal human-ML (RHML) in the context of text message classification. This configuration supports learning cycles between humans and machines who repeatedly exchange feedback regarding a classification task and adjust their knowledge representations accordingly. Our configuration is instantiated in Fusion, a novel technology artifact. Fusion is developed iteratively in two case studies of cybersecurity forums (drug trafficking and hacker attacks), in which domain experts and ML models jointly learn to classify textual messages. In the final stage, we conducted two experiments of the RHML configuration to gauge both human and machine learning processes over eight learning cycles. Generalizing our insights, we provide formal design principles for the development of systems to support RHML. This paper was accepted by D. J. Wu, special issue on the human-algorithm connection. Funding: This work was supported by the Israel’s Ministry of Defence [Grant R4441197567] and the Israel’s Ministry of Science and Technology [Grant 207076]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03518 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的蟠桃发布了新的文献求助100
1秒前
1秒前
酷酷紫夏发布了新的文献求助10
2秒前
Ava应助巫马夜安采纳,获得10
3秒前
善学以致用应助李新悦采纳,获得30
3秒前
SciGPT应助晚来客采纳,获得50
3秒前
4秒前
天天快乐应助年轻的夏槐采纳,获得10
4秒前
6秒前
贱小贱完成签到,获得积分10
8秒前
9秒前
10秒前
李新悦完成签到,获得积分10
12秒前
ksr8888完成签到,获得积分10
12秒前
13秒前
LULU完成签到,获得积分10
13秒前
拼搏惜蕊完成签到,获得积分20
13秒前
13秒前
Jasper应助聪明的冬瓜采纳,获得10
14秒前
14秒前
尉迟剑心发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
胖头鱼完成签到,获得积分10
18秒前
团子驳回了凉薄应助
19秒前
QiranSheng发布了新的文献求助10
19秒前
20秒前
Jasper应助尉迟剑心采纳,获得10
21秒前
pyb0919关注了科研通微信公众号
22秒前
22秒前
22秒前
孟醒完成签到,获得积分10
22秒前
尼莫发布了新的文献求助20
23秒前
23秒前
希望天下0贩的0应助腾腾采纳,获得10
25秒前
顾矜应助魔幻的语堂采纳,获得10
27秒前
PeizeWu完成签到,获得积分10
27秒前
自然紫山发布了新的文献求助10
27秒前
XuBao完成签到,获得积分10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114515
求助须知:如何正确求助?哪些是违规求助? 3653029
关于积分的说明 11567520
捐赠科研通 3356986
什么是DOI,文献DOI怎么找? 1843910
邀请新用户注册赠送积分活动 909779
科研通“疑难数据库(出版商)”最低求助积分说明 826509