Reciprocal Human-Machine Learning: A Theory and an Instantiation for the Case of Message Classification

计算机科学 人工智能 背景(考古学) 机器学习 互惠的 领域(数学分析) 数学 语言学 生物 数学分析 哲学 古生物学
作者
Dov Te’eni,Inbal Yahav,Alexely Zagalsky,David G. Schwartz,Gahl Silverman,Daniel Cohen,Yossi Mann,Dafna Lewinsky
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:72 (1): 167-192 被引量:53
标识
DOI:10.1287/mnsc.2022.03518
摘要

There is growing agreement among researchers and developers that in certain machine-learning (ML) tasks, it may be advantageous to keep a “human in the loop” rather than rely on fully autonomous systems. Continual human involvement can mitigate machine bias and performance deterioration while enabling humans to continue learning from insights derived by ML. Yet a microlevel theory that effectively facilitates joint and continual learning in both humans and machines is still lacking. To address this need, we adopt a design science approach and build on theories of human reciprocal learning to develop an abstract configuration for reciprocal human-ML (RHML) in the context of text message classification. This configuration supports learning cycles between humans and machines who repeatedly exchange feedback regarding a classification task and adjust their knowledge representations accordingly. Our configuration is instantiated in Fusion, a novel technology artifact. Fusion is developed iteratively in two case studies of cybersecurity forums (drug trafficking and hacker attacks), in which domain experts and ML models jointly learn to classify textual messages. In the final stage, we conducted two experiments of the RHML configuration to gauge both human and machine learning processes over eight learning cycles. Generalizing our insights, we provide formal design principles for the development of systems to support RHML. This paper was accepted by D. J. Wu, Special Issue on the Human-Algorithm Connection. Funding: This work was supported by the Israel’s Ministry of Defence [Grant R4441197567] and the Israel’s Ministry of Science and Technology [Grant 207076]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03518 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小学生采纳,获得10
1秒前
2秒前
lz发布了新的文献求助10
3秒前
5秒前
6秒前
Akim应助剑九黄采纳,获得10
7秒前
瘦瘦慕凝完成签到,获得积分10
7秒前
FashionBoy应助平常万言采纳,获得10
7秒前
Akim应助碧蓝满天采纳,获得10
7秒前
8秒前
bkagyin应助耿昊采纳,获得10
8秒前
10秒前
ghhu完成签到,获得积分10
11秒前
12秒前
12秒前
小薯条发布了新的文献求助30
12秒前
小宋完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
糖小白完成签到,获得积分10
15秒前
15秒前
bzlish发布了新的文献求助10
15秒前
亚秋完成签到,获得积分10
15秒前
16秒前
科研通AI6应助Dako采纳,获得10
17秒前
米奇完成签到 ,获得积分10
17秒前
18秒前
平常万言完成签到,获得积分10
18秒前
亚秋发布了新的文献求助10
19秒前
我不理解发布了新的文献求助10
19秒前
19秒前
小二郎应助英俊的白安采纳,获得10
19秒前
20秒前
可爱的函函应助WYX采纳,获得10
20秒前
CipherSage应助bzlish采纳,获得10
21秒前
wang完成签到 ,获得积分10
21秒前
美羊羊发布了新的文献求助10
22秒前
lz完成签到,获得积分10
22秒前
平常万言发布了新的文献求助10
22秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642700
求助须知:如何正确求助?哪些是违规求助? 4759529
关于积分的说明 15018532
捐赠科研通 4801206
什么是DOI,文献DOI怎么找? 2566533
邀请新用户注册赠送积分活动 1524546
关于科研通互助平台的介绍 1484071