挫折感
凝聚态物理
旋转玻璃
交换偏差
自旋电子学
自旋(空气动力学)
化学
纳米技术
磁场
铁磁性
磁化
材料科学
物理
磁各向异性
量子力学
热力学
作者
Zhizhi Kong,Corey J. Kaminsky,Catherine Groschner,Ryan A. Murphy,Yun Yu,Samra Husremović,Lilia S. Xie,Matthew P. Erodici,R. Soyoung Kim,Junko Yano,D. Kwabena Bediako
摘要
Some magnetic systems display a shift in the center of their magnetic hysteresis loop away from zero field, a phenomenon termed exchange bias. Despite the extensive use of the exchange bias effect, particularly in magnetic multilayers, for the design of spin-based memory/electronics devices, a comprehensive mechanistic understanding of this effect remains a longstanding problem. Recent work has shown that disorder-induced spin frustration might play a key role in exchange bias, suggesting new materials design approaches for spin-based electronic devices that harness this effect. Here, we design a spin glass with strong spin frustration induced by magnetic disorder by exploiting the distinctive structure of Fe intercalated ZrSe2, where Fe(II) centers are shown to occupy both octahedral and tetrahedral interstitial sites and to distribute between ZrSe2 layers without long-range structural order. Notably, we observe behavior consistent with a magnetically frustrated and multidegenerate ground state in these Fe0.17ZrSe2 single crystals, which persists above room temperature. Moreover, this magnetic frustration leads to a robust and tunable exchange bias up to 250 K. These results not only offer important insights into the effects of magnetic disorder and frustration in magnetic materials generally, but also highlight as design strategy the idea that a large exchange bias can arise from an inhomogeneous microscopic environment without discernible long-range magnetic order. In addition, these results show that intercalated TMDs like Fe0.17ZrSe2 hold potential for spintronic technologies that can achieve room temperature applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI