A neuroevolution potential for predicting the thermal conductivity of α , β , and ε -Ga2O3

热导率 声子 材料科学 原子间势 分子动力学 电导率 凝聚态物理 化学 计算化学 物理 物理化学 复合材料
作者
Zhanpeng Sun,Zijun Qi,Kang Liang,Xiang Sun,Zhaofu Zhang,Lijie Li,Qijun Wang,Guoqing Zhang,Gai Wu,Wei Shen
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (19) 被引量:20
标识
DOI:10.1063/5.0165320
摘要

Ga2O3 is an ultrawide-bandgap semiconductor with a variety of crystal configurations, which has the potential for a variety of applications, especially in power electronics and ultraviolet optoelectronics. However, there has been no single interatomic potential reported for Ga2O3 polymorphs in terms of molecular dynamics prediction of thermal conductivity. Here, one interatomic potential has been developed based on neural networks, which has the clear advantages of consuming less computational power than density functional theory and has high accuracy in predicting the thermal conductivity of the three polymorphs of Ga2O3. Using the neuroevolution potential, the thermal conductivity values at 300 K have been predicted. Hence, the κ[average-α] was 67.2% that of β-Ga2O3, and the κ[average-ε] was only 26.4% that of β-Ga2O3. The possible reasons for the discrepancies in thermal conductivity values in various crystal types and orientations have been explored. As a result, it could be shown that the contribution of low-frequency phonons to thermal conductivity was very significant in Ga2O3, and a unit cell with low symmetry and high atomic number would negatively impact the thermal conductivity of the material. In this work, a scheme has been proposed for accurately predicting the thermal conductivity of Ga2O3 and a relatively accurate value of the thermal conductivity of ε-Ga2O3 has been achieved, which could also provide an atomic-scale perspective for the insight into the thermal conductivity differences among α, β, and ε-Ga2O3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吭哧吭哧完成签到,获得积分10
刚刚
南宫映榕完成签到,获得积分10
1秒前
storm完成签到 ,获得积分0
4秒前
天才幸运鱼完成签到,获得积分10
6秒前
xiahou发布了新的文献求助30
9秒前
bear完成签到,获得积分10
9秒前
shuangshuang完成签到,获得积分10
12秒前
zgt01发布了新的文献求助10
12秒前
yin完成签到,获得积分10
13秒前
庸人何必自扰完成签到,获得积分10
14秒前
14秒前
君姊完成签到,获得积分10
15秒前
善学以致用应助鲷哥采纳,获得10
16秒前
gao完成签到 ,获得积分10
16秒前
可爱的宛海完成签到,获得积分10
16秒前
19秒前
古菇顾完成签到 ,获得积分10
20秒前
zgt01完成签到,获得积分10
22秒前
幽默的小刺猬完成签到 ,获得积分10
23秒前
凤迎雪飘完成签到,获得积分10
23秒前
儒雅青亦完成签到,获得积分10
23秒前
浅是宝贝完成签到,获得积分10
23秒前
tyro完成签到,获得积分10
25秒前
蓬莱依月完成签到,获得积分10
25秒前
五本笔记完成签到 ,获得积分10
25秒前
husky完成签到,获得积分10
25秒前
susu发布了新的文献求助10
25秒前
流砂完成签到,获得积分10
25秒前
xiahou完成签到,获得积分10
26秒前
asdfqwer应助limo采纳,获得10
27秒前
wanxiqianxia完成签到,获得积分10
28秒前
高高的山兰完成签到 ,获得积分10
28秒前
积极的白亦完成签到,获得积分10
32秒前
旺阿旺完成签到,获得积分10
34秒前
聪明的哈密瓜完成签到,获得积分10
34秒前
struggle完成签到 ,获得积分10
35秒前
冷静的访天完成签到 ,获得积分10
36秒前
秋qiu完成签到 ,获得积分20
37秒前
小马甲应助害羞的天真采纳,获得10
38秒前
小王同学完成签到,获得积分10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212620
求助须知:如何正确求助?哪些是违规求助? 4388725
关于积分的说明 13664435
捐赠科研通 4249316
什么是DOI,文献DOI怎么找? 2331521
邀请新用户注册赠送积分活动 1329244
关于科研通互助平台的介绍 1282658