An three-in-one on-demand ride-hailing prediction model based on multi-agent reinforcement learning

强化学习 计算机科学 需求曲线 收入 需求预测 需求模式 供求关系 网格 增强学习 需求管理 需求响应 功能(生物学) 运筹学 人工智能 经济 微观经济学 工程类 财务 几何学 数学 电气工程 进化生物学 生物 宏观经济学
作者
Shaojie Qiao,Nan Han,Jiangtao Huang,Yuzhong Peng,Hongguo Cai,Xiao Qin,Zhengyi Lei
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:149: 110965-110965 被引量:1
标识
DOI:10.1016/j.asoc.2023.110965
摘要

The ride-hailing behaviors of customers are often impacted by various factors including time, geographic distance between locations and weather conditions, causing imbalance between the supply and demand of on-demand ride-hailing dispatch. An effective on-demand ride-hailing dispatching management approach can dispatch idle vehicles and utilize traffic resources more reasonably, increase drivers' income, and improve customers' satisfaction and experience. In order to overcome the disadvantages in on-demand ride-hailing systems, we propose a three-in-one multi-agent reinforcement learning based online algorithm for ride-hailing demand prediction, called ERPM, which can achieve intelligent prediction in an effective and efficient fashion. ERPM tackles the problem that the training phase of traditional reinforcement learning models is difficult to converge due to the high dimensions of input and output data after partitioning the areas that provide platform services into grids, and uses the Actor–Critic strategy to perform on-demand ride-hailing dispatching actions, which are evaluated and optimized to intelligently predict the demand of ride-hailing in the grid areas. In addition, ERPM achieves intelligent parameter update by applying newly designed loss function, learning rate and optimization algorithm, and design an accurate on-demand ride-hailing prediction algorithm on the basis of maximizing the GMV (gross merchandise volume), i.e., the revenues of all on-demand ride-hailing orders served. Compared with traditional machine learning models, the proposed ERPM model is proved to be capable of capturing more complex features of supply and demand from the high dimensions to obtain higher prediction accuracy. Empirical studies are performed on the real Didi Chuxing data, by evaluating the results from extensive experiments, it can be observed that ERPM achieves the highest accuracy of demand prediction on daily GMV and a higher order response rate than the commonly-used famous methods, i.e., for GMV, ERPM outperforms DQN by 9.7% and the Naive model by 14.8%, for the order response rate of ERPM is 1.4% and 4.1% higher than that of DQN and Naive, MAPE (Mean Absolute Percentage Error) of DQN and Naive is 1.61 and 5.94 times higher than that of ERPM, and R2 of ERPM is improved by 8.70% and 64.8% when compared to that of DQN and Naive, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助刘小明采纳,获得10
2秒前
3秒前
5秒前
6秒前
领导范儿应助小高采纳,获得10
7秒前
宁为树发布了新的文献求助10
11秒前
12秒前
ffchen111完成签到 ,获得积分10
13秒前
英俊的胜完成签到,获得积分10
14秒前
钢铁加鲁鲁完成签到,获得积分0
15秒前
Owen完成签到,获得积分10
17秒前
刘小明发布了新的文献求助10
18秒前
Owen应助古月采纳,获得10
21秒前
阿包完成签到 ,获得积分10
21秒前
科研通AI5应助晓王采纳,获得10
22秒前
23秒前
24秒前
CodeCraft应助米子采纳,获得10
24秒前
27秒前
jianhua发布了新的文献求助10
28秒前
李健应助古月采纳,获得10
30秒前
30秒前
青橘短衫完成签到,获得积分10
33秒前
squrreil完成签到,获得积分10
34秒前
36秒前
36秒前
36秒前
36秒前
38秒前
38秒前
JamesPei应助秋子采纳,获得10
38秒前
刀锋发布了新的文献求助10
39秒前
晓王完成签到,获得积分10
40秒前
40秒前
41秒前
wly1111发布了新的文献求助10
41秒前
42秒前
43秒前
zsj发布了新的文献求助10
44秒前
晓王发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339