Online Training Flow Scheduling for Geo-Distributed Machine Learning Jobs Over Heterogeneous and Dynamic Networks

计算机科学 调度(生产过程) 分布式计算 收入 动态优先级调度 带宽(计算) 利用 计算机网络 架空(工程) 地铁列车时刻表 数学优化 服务质量 计算机安全 数学 会计 业务 操作系统
作者
Lang Fan,Xiaoning Zhang,Yangming Zhao,Keshav Sood,Shui Yu
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 277-291 被引量:7
标识
DOI:10.1109/tccn.2023.3326331
摘要

Geo-Distributed Machine Leaning (Geo-DML) has been a promising technology, which performs collaborative learning across geographically dispersed data centers (DCs) with privacy-preserving over Wide Area Networks (WANs). Unfortunately, the limited and heterogeneous WAN bandwidth poses significant challenges to the performance of Geo-DML systems, leading to increased communication overhead and affecting the revenue of ISPs eventually. In particular, when multiple online jobs coexist in Geo-DML systems, the competition for bandwidth between training flows of different jobs aggravates this negative impact. To alleviate it, this paper investigates the problem of online training flow scheduling for Geo-DML jobs. We first formulate the studied problem as an Linear Programming (LP) model with the objective of maximizing the revenue of ISPs. Then, we propose an online traffic scheduling algorithm called Training Flow Adaptive Steering (TFAS), which exploits a primal-dual framework, tailored for efficient resource allocation of jobs to schedule training flows, such that system resources are maximally utilized and training procedures can be expedited and completed in a timely manner. Meanwhile, we conduct rigorous theoretical analysis to guarantee that the proposed algorithm can achieve a good competitive ratio. Extensive evaluation results demonstrate that our algorithm performs well and outperforms commonly adopted solutions 36.2%-49.4% in average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逾越发布了新的文献求助10
刚刚
躺平才有生活完成签到,获得积分10
刚刚
hyx9504完成签到,获得积分10
2秒前
Yepp关注了科研通微信公众号
2秒前
3秒前
3秒前
霜叶栩然完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
HuEn关注了科研通微信公众号
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
丘比特应助宇文鹏煊采纳,获得10
8秒前
橙果果完成签到,获得积分10
8秒前
8秒前
8秒前
单薄遥发布了新的文献求助10
9秒前
大模型应助Lignin采纳,获得10
9秒前
yiren完成签到,获得积分10
9秒前
9秒前
10秒前
tf发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
852应助雀石颓唐采纳,获得10
11秒前
兼善发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640