Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems

计算机科学 特征选择 算法 元启发式 人工智能 维数之咒 局部最优 水准点(测量) 机器学习 数据挖掘 大地测量学 地理
作者
Heba Askr,Mahmoud Abdel-Salam,Aboul Ella Hassanien
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121582-121582 被引量:52
标识
DOI:10.1016/j.eswa.2023.121582
摘要

Feature selection (FS) is a crucial process that aims to remove unnecessary features from datasets. It plays a role in data mining and machine learning (ML) by reducing the risk associated with high-dimensional datasets. FS is considered a challenging problem that is difficult to solve efficiently due to its combinatorial nature. As the size of the problem increases, the computation time also grows. Recently, researchers have focused on metaheuristic FS algorithms specifically designed for high-dimensional datasets. Therefore, this article proposes a powerful metaheuristic algorithm called Binary Enhanced Golden Jackal Optimization (BEGJO), which is an improved version of the recently published Golden Jackal Optimization (GJO) algorithm. The original GJO algorithm faces challenges when dealing with high-dimensional FS problems, as it tends to get trapped in local optima. To address this issue, various enhancement strategies are employed to improve the efficiency of GJO. The proposed BEGJO algorithm utilizes Copula Entropy (CE) to reduce the dimensionality of high-dimensional FS problems while maintaining high classification accuracy using the K-Nearest Neighbour (K-NN) classifier. Additionally, four enhancement strategies are incorporated to enhance the exploration and exploitation capabilities of the fundamental GJO algorithm. The BEGJO algorithm is transformed into its binary form using the sigmoid transfer function, aligning it with the nature of the FS problem. It is then tested on various high-dimensional benchmark datasets. The effectiveness of BEGJO is evaluated by comparing it with well-known algorithms in terms of classification accuracy, feature dimension, and processing time. BEGJO outperforms other algorithms in terms of classification accuracy and feature dimension and ranks up to fourth in terms of processing time. Furthermore, the advantageous use of CE is demonstrated by comparing the performance of the proposed algorithm with traditional FS algorithms. Statistical evaluations are conducted to further validate the effectiveness and superiority of the proposed algorithm. The results confirm that BEGJO is an effective solution for high-dimensional FS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助睡着那么快采纳,获得10
刚刚
哈哈哈发布了新的文献求助10
刚刚
小纯洁发布了新的文献求助10
刚刚
刚刚
调皮雅琴完成签到,获得积分20
刚刚
海城好人完成签到,获得积分10
1秒前
仁爱金毛完成签到,获得积分10
1秒前
林夕完成签到,获得积分10
2秒前
FGG发布了新的文献求助10
3秒前
yangph发布了新的文献求助10
3秒前
郑娟完成签到,获得积分10
3秒前
离个大谱发布了新的文献求助10
3秒前
李先生发布了新的文献求助10
3秒前
花小花发布了新的文献求助10
3秒前
HEIREN1完成签到 ,获得积分10
3秒前
4秒前
调皮雅琴发布了新的文献求助10
4秒前
Orange应助小岳今天吃什么采纳,获得10
4秒前
研友_VZG7GZ应助独特的易形采纳,获得10
5秒前
5秒前
小蘑菇应助苏州河采纳,获得10
6秒前
小明发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
Li完成签到,获得积分10
9秒前
9秒前
李健应助小纯洁采纳,获得10
9秒前
menghongmei发布了新的文献求助10
9秒前
10秒前
wy18567337203发布了新的文献求助10
10秒前
Orange应助鱼七采纳,获得10
10秒前
YAO发布了新的文献求助10
10秒前
11秒前
12365完成签到,获得积分10
12秒前
12秒前
缓慢的白昼应助礽粥粥采纳,获得30
12秒前
12秒前
无花果应助非流浪小猫采纳,获得20
13秒前
轻松博超完成签到,获得积分10
14秒前
彬彬发布了新的文献求助10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232637
求助须知:如何正确求助?哪些是违规求助? 3765874
关于积分的说明 11832715
捐赠科研通 3424560
什么是DOI,文献DOI怎么找? 1879384
邀请新用户注册赠送积分活动 932281
科研通“疑难数据库(出版商)”最低求助积分说明 839489