清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mammography-based deep learning model for coronary artery calcification

医学 乳腺摄影术 钙化 乳腺癌 内科学 深度学习 心脏病学 人工智能 放射科 癌症 计算机科学
作者
Sang-Il Ahn,Yoosoo Chang,Ria Kwon,Jeonggyu Kang,JunHyeok Choi,Gayoung Lim,Mi-ri Kwon,Seungho Ryu,Jitae Shin
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:25 (4): 456-466 被引量:3
标识
DOI:10.1093/ehjci/jead307
摘要

Mammography, commonly used for breast cancer screening in women, can also predict cardiovascular disease. We developed mammography-based deep learning models for predicting coronary artery calcium (CAC) scores, an established predictor of coronary events. We evaluated a subset of Korean adults who underwent image mammography and CAC computed tomography and randomly selected approximately 80% of the participants as the training dataset, used to develop a convolutional neural network (CNN) to predict detectable CAC. The sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), and overall accuracy of the model's performance were evaluated. The training and validation datasets included 5235 and 1208 women, respectively [mean age, 52.6 (±10.2) years], including non-zero cases (46.8%). The CNN-based deep learning prediction model based on the Resnet18 model showed the best performance. The model was further improved using contrastive learning strategies based on positive and negative samples: sensitivity, 0.764 (95% CI, 0.667-0.830); specificity, 0.652 (95% CI, 0.614-0.710); AUROC, 0.761 (95% CI, 0.742-0.780); and accuracy, 70.8% (95% CI, 68.8-72.4). Moreover, including age and menopausal status in the model further improved its performance (AUROC, 0.776; 95% CI, 0.762-0.790). The Framingham risk score yielded an AUROC of 0.736 (95% CI, 0.712-0.761). Mammography-based deep learning models showed promising results for predicting CAC, performing comparably to conventional risk models. This indicates mammography's potential for dual-risk assessment in breast cancer and cardiovascular disease. Further research is necessary to validate these findings in diverse populations, with a particular focus on representation from national breast screening programmes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献搬运工完成签到 ,获得积分0
4秒前
SciGPT应助武雨寒采纳,获得10
19秒前
28秒前
两个榴莲完成签到,获得积分0
31秒前
武雨寒完成签到,获得积分20
34秒前
35秒前
humorlife完成签到,获得积分10
38秒前
现代的冰海完成签到,获得积分10
39秒前
zyyicu完成签到,获得积分10
40秒前
1分钟前
武雨寒发布了新的文献求助10
1分钟前
情怀应助木叶采纳,获得10
1分钟前
1分钟前
1分钟前
木叶发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
摸鱼划水完成签到 ,获得积分10
2分钟前
2分钟前
小宇子发布了新的文献求助10
2分钟前
2分钟前
FashionBoy应助酷炫梦蕊采纳,获得10
3分钟前
xcuwlj完成签到 ,获得积分10
3分钟前
落落洛栖完成签到 ,获得积分10
3分钟前
3分钟前
Lhx完成签到,获得积分20
3分钟前
Lhx发布了新的文献求助10
3分钟前
朱洪帆完成签到,获得积分20
3分钟前
江江完成签到 ,获得积分10
3分钟前
忐忑的书桃完成签到 ,获得积分10
3分钟前
gwbk完成签到,获得积分10
4分钟前
4分钟前
伊可创发布了新的文献求助10
4分钟前
迷你的靖雁完成签到,获得积分10
4分钟前
Jasper应助伊可创采纳,获得10
4分钟前
tt完成签到,获得积分10
4分钟前
5分钟前
酷炫梦蕊发布了新的文献求助10
5分钟前
smottom应助朱洪帆采纳,获得10
5分钟前
5分钟前
蔺忘幽发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5829166
求助须知:如何正确求助?哪些是违规求助? 6042197
关于积分的说明 15576181
捐赠科研通 4948787
什么是DOI,文献DOI怎么找? 2666458
邀请新用户注册赠送积分活动 1612076
关于科研通互助平台的介绍 1567129