COVID-19 Pneumonia Classification with Transformer from Incomplete Modalities

模式 人工智能 计算机科学 卷积神经网络 2019年冠状病毒病(COVID-19) 医学影像学 稳健性(进化) 模式识别(心理学) 模态(人机交互) 放射科 医学 病理 疾病 传染病(医学专业) 社会学 化学 基因 生物化学 社会科学
作者
Eduard Lloret Carbonell,Yiqing Shen,Xin Yang,Jing Ke
出处
期刊:Lecture Notes in Computer Science 卷期号:: 379-388 被引量:2
标识
DOI:10.1007/978-3-031-43904-9_37
摘要

COVID-19 is a viral disease that causes severe acute respiratory inflammation. Although with less death rate, its increasing infectivity rate, together with its acute symptoms and high number of infections, is still attracting growing interests in the image analysis of COVID-19 pneumonia. Current accurate diagnosis by radiologists requires two modalities of X-Ray and Computed Tomography (CT) images from one patient. However, one modality might miss in clinical practice. In this study, we propose a novel multi-modality model to integrate X-Ray and CT data to further increase the versatility and robustness of the AI-assisted COVID-19 pneumonia diagnosis that can tackle incomplete modalities. We develop a Convolutional Neural Networks (CNN) and Transformers hybrid architecture, which extracts extensive features from the distinct data modalities. This classifier is designed to be able to predict COVID-19 images with X-Ray image, or CT image, or both, while at the same time preserving the robustness when missing modalities are found. Conjointly, a new method is proposed to fuse three-dimensional and two-dimensional images, which further increase the feature extraction and feature correlation of the input data. Thus, verified with a real-world public dataset of BIMCV-COVID19, the model outperform state-of-the-arts with the AUC score of 79.93%. Clinically, the model has important medical significance for COVID-19 examination when some image modalities are missing, offering relevant flexibility to medical teams. Besides, the structure may be extended to other chest abnormalities to be detected by X-ray or CT examinations. Code is available at https://github.com/edurbi/MICCAI2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
TianFuAI完成签到,获得积分10
2秒前
4秒前
量子星尘发布了新的文献求助50
4秒前
华仔应助叶y采纳,获得10
6秒前
7秒前
醉熏的幻灵完成签到 ,获得积分10
7秒前
dd发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
科研女仆完成签到 ,获得积分10
9秒前
虚幻采枫完成签到,获得积分10
9秒前
Yohi完成签到 ,获得积分10
10秒前
0x3f完成签到 ,获得积分10
11秒前
江城闲鹤发布了新的文献求助10
11秒前
Tree_QD完成签到 ,获得积分10
12秒前
苏雅霏完成签到 ,获得积分10
13秒前
JUAN发布了新的文献求助10
13秒前
活泼学生完成签到 ,获得积分10
14秒前
engel58完成签到,获得积分10
16秒前
乐乐应助航行天下采纳,获得10
16秒前
科研通AI6应助江城闲鹤采纳,获得10
19秒前
Gwen完成签到,获得积分10
22秒前
22秒前
roger完成签到 ,获得积分10
23秒前
花卷完成签到,获得积分10
25秒前
老福贵儿应助dd采纳,获得10
26秒前
小v完成签到 ,获得积分10
27秒前
樊家圣发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
yy发布了新的文献求助20
32秒前
38秒前
yan完成签到 ,获得积分10
40秒前
迷路凌柏完成签到 ,获得积分10
40秒前
minino完成签到 ,获得积分0
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966