已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

COVID-19 Pneumonia Classification with Transformer from Incomplete Modalities

模式 人工智能 计算机科学 卷积神经网络 2019年冠状病毒病(COVID-19) 医学影像学 稳健性(进化) 模式识别(心理学) 模态(人机交互) 放射科 医学 病理 疾病 传染病(医学专业) 社会科学 生物化学 化学 社会学 基因
作者
Eduard Lloret Carbonell,Yiqing Shen,Xin Yang,Jing Ke
出处
期刊:Lecture Notes in Computer Science 卷期号:: 379-388 被引量:2
标识
DOI:10.1007/978-3-031-43904-9_37
摘要

COVID-19 is a viral disease that causes severe acute respiratory inflammation. Although with less death rate, its increasing infectivity rate, together with its acute symptoms and high number of infections, is still attracting growing interests in the image analysis of COVID-19 pneumonia. Current accurate diagnosis by radiologists requires two modalities of X-Ray and Computed Tomography (CT) images from one patient. However, one modality might miss in clinical practice. In this study, we propose a novel multi-modality model to integrate X-Ray and CT data to further increase the versatility and robustness of the AI-assisted COVID-19 pneumonia diagnosis that can tackle incomplete modalities. We develop a Convolutional Neural Networks (CNN) and Transformers hybrid architecture, which extracts extensive features from the distinct data modalities. This classifier is designed to be able to predict COVID-19 images with X-Ray image, or CT image, or both, while at the same time preserving the robustness when missing modalities are found. Conjointly, a new method is proposed to fuse three-dimensional and two-dimensional images, which further increase the feature extraction and feature correlation of the input data. Thus, verified with a real-world public dataset of BIMCV-COVID19, the model outperform state-of-the-arts with the AUC score of 79.93%. Clinically, the model has important medical significance for COVID-19 examination when some image modalities are missing, offering relevant flexibility to medical teams. Besides, the structure may be extended to other chest abnormalities to be detected by X-ray or CT examinations. Code is available at https://github.com/edurbi/MICCAI2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hvgjgfjhgjh发布了新的文献求助10
3秒前
qiuzhu_完成签到 ,获得积分20
6秒前
科科完成签到 ,获得积分10
10秒前
归尘应助pishuang采纳,获得30
12秒前
yxt完成签到 ,获得积分10
14秒前
ha完成签到 ,获得积分10
14秒前
科研通AI6应助qiuzhu_采纳,获得10
14秒前
15秒前
Vince完成签到,获得积分20
15秒前
21秒前
好好学习发布了新的文献求助10
22秒前
可爱的函函应助Azaspiro采纳,获得10
25秒前
山河发布了新的文献求助10
26秒前
26秒前
夏惋清完成签到 ,获得积分0
27秒前
27秒前
Random完成签到,获得积分10
29秒前
李健应助LIU采纳,获得10
29秒前
32秒前
33秒前
gqq完成签到 ,获得积分10
34秒前
自觉一曲发布了新的文献求助10
34秒前
浮游应助十一采纳,获得10
36秒前
36秒前
大壮发布了新的文献求助10
37秒前
何柯发布了新的文献求助10
37秒前
38秒前
39秒前
不加班的小鱼完成签到,获得积分10
40秒前
41秒前
郭浩峰发布了新的文献求助10
43秒前
LIU发布了新的文献求助10
43秒前
43秒前
重要手机完成签到 ,获得积分10
44秒前
852应助梦雨甘采纳,获得10
44秒前
yu发布了新的文献求助10
44秒前
45秒前
朴实子骞完成签到 ,获得积分10
46秒前
顾矜应助自觉一曲采纳,获得10
47秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475997
求助须知:如何正确求助?哪些是违规求助? 4577624
关于积分的说明 14362311
捐赠科研通 4505497
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456355
关于科研通互助平台的介绍 1429986