Transfer Learning-Assisted Survival Analysis of Breast Cancer Relying on the Spatial Interaction Between Tumor-Infiltrating Lymphocytes and Tumors

乳腺癌 计算机科学 癌症 特征(语言学) 肿瘤科 人工智能 内科学 医学 语言学 哲学
作者
Yawen Wu,Yingli Zuo,Qi Zhu,Jianpeng Sheng,Daoqiang Zhang,Wei Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 612-621 被引量:2
标识
DOI:10.1007/978-3-031-43987-2_59
摘要

Whole-Slide Histopathology Image (WSI) is regarded as the gold standard for survival prediction of Breast Cancer (BC) across different subtypes. However, in cancer prognosis applications, the cost of acquiring patients' survival information is high and can be extremely difficult in practice. By considering that there exists a certain common mechanism for tumor progression among different subtypes of Breast Invasive Carcinoma(BRCA), it becomes critical to utilize data from a related subtype of BRCA to help predict the patients' survival in the target domain. To address this issue, we proposed a TILs-Tumor interactions guided unsupervised domain adaptation (T2UDA) algorithm to predict the patients' survival on the target BC subtype. Different from the existing feature-level or instance-level transfer learning strategy, our study considered the fact that the tumor-infiltrating lymphocytes (TILs) and its correlation with tumors reveal similar role in the prognosis of different BRCA subtypes. More specifically, T2UDA first employed the Graph Attention Network (GAT) to learn the node embeddings and the spatial interactions between tumor and TILs patches in WSI. Then, besides aligning the embeddings of different types of nodes across the source and target domains, we proposed a novel Tumor-TILs interaction alignment (TTIA) module to ensure that the distribution of interaction weights are similar in both domains. We evaluated the performance of our method on the BRCA cohort derived from the Cancer Genome Atlas (TCGA), and the experimental results indicated that T2UDA outperformed other domain adaption methods for predicting patients' clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Yolanda驳回了Hello应助
1秒前
小大夫完成签到 ,获得积分10
1秒前
彭于晏应助懒得可爱采纳,获得10
2秒前
zzz完成签到,获得积分10
2秒前
2秒前
文艺的海亦完成签到 ,获得积分10
2秒前
全糖发布了新的文献求助30
3秒前
尤文昊发布了新的文献求助10
3秒前
hooo完成签到,获得积分10
4秒前
LY发布了新的文献求助10
4秒前
4秒前
欢喜妙梦完成签到 ,获得积分10
4秒前
小慈完成签到,获得积分10
4秒前
4秒前
能干的新筠完成签到,获得积分10
5秒前
CAOHOU应助水电站采纳,获得10
5秒前
ED应助脆啵啵马克宝采纳,获得10
5秒前
5秒前
5秒前
拣尽南枝发布了新的文献求助80
6秒前
草莓布丁完成签到,获得积分10
6秒前
今后应助hooyi采纳,获得30
6秒前
7秒前
zzz发布了新的文献求助30
7秒前
7秒前
moom完成签到 ,获得积分10
7秒前
8秒前
huiee发布了新的文献求助10
8秒前
巫雍发布了新的文献求助10
8秒前
诚心靳发布了新的文献求助10
8秒前
搞怪书兰完成签到,获得积分10
9秒前
希望天下0贩的0应助kuro采纳,获得10
9秒前
9秒前
盛事不朽完成签到 ,获得积分10
9秒前
Yonina发布了新的文献求助10
10秒前
10秒前
11秒前
saxg_hu完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582