Development and validation of a predictive model of the hospital cost associated with bariatric surgery

医学 平均绝对百分比误差 随机森林 收入 平均绝对误差 集合(抽象数据类型) 运营管理 外科 统计 均方误差 计算机科学 机器学习 数学 工程类 财务 经济 程序设计语言
作者
Vincent Ochs,Anja Tobler,Bassey Enodien,Baraa Saad,Stephanie Taha‐Mehlitz,Julia Wolleb,Joelle El Awar,Katerina Neumann,Susanne Drews,Ilan Rosenblum,Reinhard Stoll,Robert Rosenberg,Daniel M. Frey,Philippe C. Cattin,Anas Taha
出处
期刊:Obesity Research & Clinical Practice [Elsevier]
卷期号:17 (6): 529-535 被引量:2
标识
DOI:10.1016/j.orcp.2023.10.003
摘要

Hospitals are facing difficulties in predicting, evaluating, and managing cost-affecting parameters in patient treatments. Inaccurate cost prediction leads to a deficit in operational revenue. This study aims to determine the ability of Machine Learning (ML) algorithms to predict the cost of care in bariatric and metabolic surgery and develop a predictive tool for improved cost analysis. 602 patients who underwent bariatric and metabolic surgery at Wetzikon hospital from 2013 to 2019 were included in the study. Multiple variables including patient factors, surgical factors, and post-operative complications were tested using a number of predictive modeling strategies. The study was registered under Req 2022–00659 and approved by an institutional review board. The cost was defined as the sum of all costs incurred during the hospital stay, expressed in CHF (Swiss Francs). The data was preprocessed and split into a training set (80%) and a test set (20%) to build and validate models. The final model was selected based on the mean absolute percentage error (MAPE). The Random Forest model was found to be the most accurate in predicting the overall cost of bariatric surgery with a mean absolute percentage error of 12.7. The study provides evidence that the Random Forest model could be used by hospitals to help with financial calculations and cost-efficient operation. However, further research is needed to improve its accuracy. This study serves as a proof of principle for an efficient ML-based prediction tool to be tested on multi-center data in future phases of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
5秒前
加油完成签到 ,获得积分10
7秒前
不才完成签到,获得积分10
7秒前
卷卷心发布了新的文献求助30
7秒前
许蓁蓁发布了新的文献求助10
7秒前
zxer发布了新的文献求助10
8秒前
8秒前
9秒前
kkkkkk发布了新的文献求助10
9秒前
彭于晏应助同你讲采纳,获得10
9秒前
活泼盼望发布了新的文献求助10
10秒前
12秒前
13秒前
甜大圈发布了新的文献求助10
15秒前
在水一方应助kkkkkk采纳,获得10
17秒前
刘丰发布了新的文献求助10
20秒前
舒心的荟完成签到 ,获得积分10
20秒前
科研通AI6.2应助小小采纳,获得10
20秒前
科研通AI6.2应助Ethan采纳,获得10
23秒前
小二郎应助zxer采纳,获得10
23秒前
Ava应助huangbaba11采纳,获得10
27秒前
鼠鼠我要累死了完成签到,获得积分10
27秒前
28秒前
共享精神应助xiaofei采纳,获得10
29秒前
31秒前
韩soso发布了新的文献求助10
32秒前
33秒前
34秒前
科研通AI6.1应助Warden采纳,获得10
34秒前
bless发布了新的文献求助10
35秒前
岳岳岳发布了新的文献求助10
37秒前
蓝天应助水沐林泽采纳,获得10
40秒前
坦率千万完成签到 ,获得积分10
40秒前
清爽的珍发布了新的文献求助10
41秒前
41秒前
香蕉觅云应助小胖采纳,获得10
42秒前
李爱国应助如何采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864040
求助须知:如何正确求助?哪些是违规求助? 6397265
关于积分的说明 15650063
捐赠科研通 4978154
什么是DOI,文献DOI怎么找? 2685313
邀请新用户注册赠送积分活动 1628374
关于科研通互助平台的介绍 1586043