Development and validation of a predictive model of the hospital cost associated with bariatric surgery

医学 平均绝对百分比误差 随机森林 收入 平均绝对误差 集合(抽象数据类型) 运营管理 外科 统计 均方误差 计算机科学 机器学习 数学 工程类 财务 经济 程序设计语言
作者
Vincent Ochs,Anja Tobler,Bassey Enodien,Baraa Saad,Stephanie Taha‐Mehlitz,Julia Wolleb,Joelle El Awar,Katerina Neumann,Susanne Drews,Ilan Rosenblum,Reinhard Stoll,Robert Rosenberg,Daniel M. Frey,Philippe C. Cattin,Anas Taha
出处
期刊:Obesity Research & Clinical Practice [Elsevier BV]
卷期号:17 (6): 529-535 被引量:2
标识
DOI:10.1016/j.orcp.2023.10.003
摘要

Hospitals are facing difficulties in predicting, evaluating, and managing cost-affecting parameters in patient treatments. Inaccurate cost prediction leads to a deficit in operational revenue. This study aims to determine the ability of Machine Learning (ML) algorithms to predict the cost of care in bariatric and metabolic surgery and develop a predictive tool for improved cost analysis. 602 patients who underwent bariatric and metabolic surgery at Wetzikon hospital from 2013 to 2019 were included in the study. Multiple variables including patient factors, surgical factors, and post-operative complications were tested using a number of predictive modeling strategies. The study was registered under Req 2022–00659 and approved by an institutional review board. The cost was defined as the sum of all costs incurred during the hospital stay, expressed in CHF (Swiss Francs). The data was preprocessed and split into a training set (80%) and a test set (20%) to build and validate models. The final model was selected based on the mean absolute percentage error (MAPE). The Random Forest model was found to be the most accurate in predicting the overall cost of bariatric surgery with a mean absolute percentage error of 12.7. The study provides evidence that the Random Forest model could be used by hospitals to help with financial calculations and cost-efficient operation. However, further research is needed to improve its accuracy. This study serves as a proof of principle for an efficient ML-based prediction tool to be tested on multi-center data in future phases of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cyf发布了新的文献求助10
1秒前
hl123456完成签到,获得积分10
1秒前
1秒前
Wind应助WIK采纳,获得10
2秒前
3秒前
爆米花应助onn采纳,获得10
3秒前
3秒前
3秒前
4秒前
tsenchanted发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
常乐应助ANN采纳,获得10
7秒前
7秒前
8秒前
kong发布了新的文献求助10
8秒前
oneonlycrown发布了新的文献求助10
8秒前
颜苏YANSU发布了新的文献求助10
9秒前
仲颖完成签到,获得积分10
9秒前
9秒前
Obliviate发布了新的文献求助10
9秒前
9秒前
10秒前
EE发布了新的文献求助10
10秒前
白菜发布了新的文献求助10
10秒前
科目三应助湖畔望月寒采纳,获得10
10秒前
10秒前
11秒前
11秒前
orixero应助Lin采纳,获得10
12秒前
13秒前
caidan发布了新的文献求助10
13秒前
OI发布了新的文献求助10
13秒前
馒头爸爸完成签到,获得积分10
14秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4207834
求助须知:如何正确求助?哪些是违规求助? 3742107
关于积分的说明 11779637
捐赠科研通 3412244
什么是DOI,文献DOI怎么找? 1872531
邀请新用户注册赠送积分活动 927188
科研通“疑难数据库(出版商)”最低求助积分说明 837021