Dual-Attention Transformer and Discriminative Flow for Industrial Visual Anomaly Detection

判别式 异常检测 计算机科学 人工智能 变压器 像素 水准点(测量) 分割 模式识别(心理学) 机器学习 工程类 大地测量学 电压 地理 电气工程
作者
Haiming Yao,Wei Luo,Wenyong Yu,Xiaotian Zhang,Zhenfeng Qiang,Donghao Luo,Hui Shi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6126-6140 被引量:8
标识
DOI:10.1109/tase.2023.3322156
摘要

In this paper, we introduce the novel state-of-the-art Dual-attention Transformer and Discriminative Flow (DADF) framework for visual anomaly detection. Based on only normal knowledge, visual anomaly detection has wide applications in industrial scenarios and has attracted significant attention. However, most existing methods fail to meet the requirements of logic defect detection under complex semantic conditions. In contrast, the proposed DADF presents a new paradigm: it firstly leverages a pre-trained network to acquire multi-scale prior embeddings, followed by the development of a vision Transformer with dual attention mechanisms, namely self-attention and memorial-attention, to achieve global-local two-level reconstruction for prior embeddings with the sequential and normality association. Additionally, we propose using normalizing flow to establish discriminative likelihood for the joint distribution of prior and reconstructions at each scale. The experimental results validate the effectiveness of the proposed DADF approach, as evidenced by the impressive performance metrics obtained across various benchmarks, especially for logic defects with complex semantics. Specifically, DADF achieves image-level and pixel-level AUROC scores of 98.3 and 98.4, respectively, on the Mvtec AD benchmark, and an image-level AUROC score of 83.7 and a pixel sPRO score of 67.4 on the Mvtec LOCO AD benchmark. Additionally, we applied DADF to a real-world Printed Circuit Board (PCB) industrial defect inspection task, further demonstrating its efficacy in practical scenarios. The source code of DADF is available at https://github.com/hmyao22/DADF. Note to Practitioners —Most of the current industrial visual inspection techniques can only detect structural defects under uncomplicated semantic settings. Detecting anomalies in products featuring intricate components and logical defects with high-level semantics remains a considerable challenge. The presented DADF is a robust model that can effectively identify defects in products with complex components, such as Printed Circuit Boards (PCBs). Furthermore, it can also accurately detect both structural and logical defects, which is of significant importance for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小肆完成签到 ,获得积分10
2秒前
祁乾完成签到 ,获得积分10
2秒前
3秒前
fangao完成签到,获得积分10
3秒前
可靠之玉完成签到,获得积分10
3秒前
臭小子完成签到,获得积分10
4秒前
4秒前
黑米粥发布了新的文献求助10
5秒前
harry2021发布了新的文献求助10
7秒前
7秒前
落忆完成签到 ,获得积分10
9秒前
10秒前
YZZ完成签到,获得积分10
12秒前
都会完成签到 ,获得积分10
14秒前
浴火重生发布了新的文献求助10
15秒前
16秒前
Adian完成签到,获得积分10
17秒前
20秒前
22秒前
harry2021发布了新的文献求助10
22秒前
一支烤串完成签到,获得积分20
23秒前
wy.he应助郝君颖采纳,获得30
24秒前
黎明发布了新的文献求助10
25秒前
25秒前
Stephen发布了新的文献求助10
25秒前
wsh完成签到,获得积分10
25秒前
lincy发布了新的文献求助10
26秒前
浴火重生完成签到,获得积分10
27秒前
黑米粥发布了新的文献求助10
27秒前
wwwwww发布了新的文献求助10
29秒前
迷人的沛山完成签到 ,获得积分10
32秒前
黎明完成签到,获得积分10
33秒前
35秒前
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
36秒前
Akim应助科研通管家采纳,获得10
36秒前
领导范儿应助momosci采纳,获得30
36秒前
36秒前
wwwwww完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323538
关于积分的说明 10214834
捐赠科研通 3038709
什么是DOI,文献DOI怎么找? 1667628
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315