Dual-Attention Transformer and Discriminative Flow for Industrial Visual Anomaly Detection

判别式 异常检测 计算机科学 人工智能 变压器 像素 水准点(测量) 分割 模式识别(心理学) 机器学习 工程类 大地测量学 电压 地理 电气工程
作者
Haiming Yao,Wei Luo,Wenyong Yu,Xiaotian Zhang,Zhenfeng Qiang,Donghao Luo,Hui Shi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6126-6140 被引量:8
标识
DOI:10.1109/tase.2023.3322156
摘要

In this paper, we introduce the novel state-of-the-art Dual-attention Transformer and Discriminative Flow (DADF) framework for visual anomaly detection. Based on only normal knowledge, visual anomaly detection has wide applications in industrial scenarios and has attracted significant attention. However, most existing methods fail to meet the requirements of logic defect detection under complex semantic conditions. In contrast, the proposed DADF presents a new paradigm: it firstly leverages a pre-trained network to acquire multi-scale prior embeddings, followed by the development of a vision Transformer with dual attention mechanisms, namely self-attention and memorial-attention, to achieve global-local two-level reconstruction for prior embeddings with the sequential and normality association. Additionally, we propose using normalizing flow to establish discriminative likelihood for the joint distribution of prior and reconstructions at each scale. The experimental results validate the effectiveness of the proposed DADF approach, as evidenced by the impressive performance metrics obtained across various benchmarks, especially for logic defects with complex semantics. Specifically, DADF achieves image-level and pixel-level AUROC scores of 98.3 and 98.4, respectively, on the Mvtec AD benchmark, and an image-level AUROC score of 83.7 and a pixel sPRO score of 67.4 on the Mvtec LOCO AD benchmark. Additionally, we applied DADF to a real-world Printed Circuit Board (PCB) industrial defect inspection task, further demonstrating its efficacy in practical scenarios. The source code of DADF is available at https://github.com/hmyao22/DADF. Note to Practitioners —Most of the current industrial visual inspection techniques can only detect structural defects under uncomplicated semantic settings. Detecting anomalies in products featuring intricate components and logical defects with high-level semantics remains a considerable challenge. The presented DADF is a robust model that can effectively identify defects in products with complex components, such as Printed Circuit Boards (PCBs). Furthermore, it can also accurately detect both structural and logical defects, which is of significant importance for practical industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
睿智小能关注了科研通微信公众号
4秒前
yyyyy5发布了新的文献求助10
5秒前
刘雪完成签到 ,获得积分10
6秒前
7秒前
魔幻友菱完成签到 ,获得积分10
8秒前
jianjiao完成签到,获得积分10
10秒前
sun发布了新的文献求助10
12秒前
昵昵昵昵昵完成签到 ,获得积分10
17秒前
科研小趴菜完成签到 ,获得积分10
18秒前
空儒完成签到 ,获得积分10
21秒前
Yxxx完成签到 ,获得积分10
21秒前
科研通AI6.2应助明芬采纳,获得100
26秒前
传奇3应助圣诞节采纳,获得10
28秒前
3333333完成签到,获得积分10
28秒前
Xu完成签到,获得积分10
40秒前
40秒前
41秒前
41秒前
41秒前
41秒前
41秒前
41秒前
41秒前
41秒前
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
英俊的铭应助科研通管家采纳,获得10
42秒前
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
无花果应助科研通管家采纳,获得10
42秒前
慕青应助科研通管家采纳,获得10
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
42秒前
43秒前
Orange应助科研通管家采纳,获得10
43秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851620
求助须知:如何正确求助?哪些是违规求助? 6272410
关于积分的说明 15626974
捐赠科研通 4967617
什么是DOI,文献DOI怎么找? 2678681
邀请新用户注册赠送积分活动 1622909
关于科研通互助平台的介绍 1579353