Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors

药效团 数量结构-活动关系 虚拟筛选 HDAC3型 对接(动物) 计算生物学 生物信息学 组蛋白脱乙酰基酶 化学 广告 立体化学 药品 生物 药理学 生物化学 组蛋白 医学 基因 护理部
作者
Goverdhan Lanka,Darakhshan Begum,Suvankar Banerjee,Nilanjan Adhikari,Perumal Yogeeswari,Balaram Ghosh
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107481-107481 被引量:78
标识
DOI:10.1016/j.compbiomed.2023.107481
摘要

Histone deacetylase 3 (HDAC3) is an epigenetic regulator that involves gene expression, apoptosis, and cell cycle progression, and the overexpression of HDAC3 is accountable for several cancers, neurodegeneracy, and many other diseases. Therefore, HDAC3 emerged as a promising drug target for the novel drug design. Here, we carried out the pharmacophore modeling using 50 benzamide-based HDAC3 selective inhibitors and utilized it for PHASE ligand screening to retrieve the hits with similar pharmacophore features. The dataset inhibitors of best hypotheses used to build the 3D QSAR model and the generated 3D QSAR model resulted in good PLS statistics with a regression coefficient (R2) of 0.89, predictive coefficient (Q2) of 0.88, and Pearson-R factor of 0.94 indicating its excellent predictive ability. The hits retrieved from pharmacophore-based virtual screening were subjected to docking against HDAC3 for the identification of potential inhibitors. A total of 10 hitsM1 to M10 were ranked using their scoring functions and further subject to lead optimization. The Prime MM/GBSA, AutoDock binding free energies, and ADMET studies were implemented for the selection of lead candidates. The four ligand molecules M1, M2, M3, and M4 were identified as potential leads against HDAC3 after lead optimization. The top two leads M1 and M2 were subjected to MD simulations for their stability evaluation with HDAC3. The newly designed leads M11 and M12 were identified as HDAC3 potential inhibitors from MD simulations studies. Therefore, the outcomes of the present study could provide insights into the discovery of new potential HDAC3 inhibitors with improved selectivity and activity against a variety of cancers and neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
木木三发布了新的文献求助10
2秒前
3秒前
3秒前
doctorbba发布了新的文献求助10
4秒前
4秒前
zss发布了新的文献求助10
4秒前
5秒前
SciGPT应助yhmi0809采纳,获得10
7秒前
愉快寄真完成签到,获得积分10
7秒前
8秒前
NexusExplorer应助谦让溪灵采纳,获得10
9秒前
吴垚发布了新的文献求助10
10秒前
科研通AI2S应助研究新人采纳,获得10
10秒前
11秒前
mzf发布了新的文献求助50
12秒前
爆米花应助li采纳,获得10
12秒前
13秒前
13秒前
14秒前
doctorbba完成签到,获得积分10
15秒前
16秒前
华仔应助年轻的冷雁采纳,获得10
17秒前
18秒前
自然的泽浩完成签到 ,获得积分10
18秒前
18秒前
852应助酷酷的滕采纳,获得10
18秒前
18秒前
小吴小吴发布了新的文献求助20
21秒前
小马甲应助科研通管家采纳,获得10
22秒前
佰斯特威应助科研通管家采纳,获得10
22秒前
佰斯特威应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
馆长应助科研通管家采纳,获得30
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4714579
求助须知:如何正确求助?哪些是违规求助? 4077366
关于积分的说明 12609877
捐赠科研通 3780423
什么是DOI,文献DOI怎么找? 2088195
邀请新用户注册赠送积分活动 1114505
科研通“疑难数据库(出版商)”最低求助积分说明 991789